4 research outputs found

    A Combination of the Immunotherapeutic Drug Anti-Programmed Death 1 with Lenalidomide Enhances Specific T Cell Immune Responses against Acute Myeloid Leukemia Cells

    Get PDF
    Immune checkpoint inhibitors can block inhibitory molecules on the surface of T cells, switching them from an exhausted to an active state. One of these inhibitory immune checkpoints, programmed cell death protein 1 (PD-1) is expressed on T cell subpopulations in acute myeloid leukemia (AML). PD-1 expression has been shown to increase with AML progression following allo-haematopoeitic stem cell transplantation, and therapy with hypomethylating agents. We have previously shown that anti-PD-1 can enhance the response of leukemia-associated antigen (LAA)-specific T cells against AML cells as well as leukemic stem and leukemic progenitor cells (LSC/LPCs) ex vivo. In concurrence, blocking of PD-1 with antibodies such as nivolumab has been shown to enhance response rates post-chemotherapy and stem cell transplant. The immune modulating drug lenalidomide has been shown to promote anti-tumour immunity including anti-inflammatory, anti-proliferative, pro-apoptotic and anti-angiogenicity. The effects of lenalidomide are distinct from chemotherapy, hypomethylating agents or kinase inhibitors, making lenalidomide an attractive agent for use in AML and in combination with existing active agents. To determine whether anti-PD-1 (nivolumab) and lenalidomide alone or in combination could enhance LAA-specific T cell immune responses, we used colony-forming immune and ELISpot assays. Combinations of immunother-apeutic approaches are believed to increase antigen-specific immune responses against leukemic cells including LPC/LSCs. In this study we used a combination of LAA-peptides with the immune checkpoint inhibitor anti-PD-1 and lenalidomide to enhance the killing of LSC/LPCs ex vivo. Our data offer a novel insight into how we could improve AML patient responses to treatment in future clinical studies

    Enhanced stimulation of antigen-specific immune responses against nucleophosmin 1 mutated acute myeloid leukaemia by an anti-programmed death 1 antibody

    Get PDF
    Nucleophosmin1 (NPM1) is one of the most commonly mutated genes in AML and is often associated with a favourable prognosis. Immune responses play an increasing role in AML treatment decisions; however, the role of immune checkpoint inhibition is still not clear. To address this, we investigated specific immune responses against NPM1, and three other leukaemia-associated antigens (LAA), PRAME, Wilms' tumour 1 and RHAMM in AML patients. We investigated T cell responses against leukaemic progenitor/stem cells (LPC/LSC) using colony-forming immunoassays and flow cytometry. We examined whether immune checkpoint inhibition with the anti-programmed death 1 antibody increases the immune response against stem cell-like cells, comparing cells from NPM1 mutated and NPM1 wild-type AML patients. We found that the anti-PD-1 antibody, nivolumab, increases LAA stimulated cytotoxic T lymphocytes and the cytotoxic effect against LPC/LSC. The effect was strongest against NPM1mut cells when the immunogenic epitope was derived from the mutated region of NPM1 and these effects were enhanced through the addition of anti-PD-1. The data suggest that patients with NPM1 mutated AML could be treated with the immune checkpoint inhibitor anti-PD-1 and that this treatment combined with NPM1-mutation specific directed immunotherapy could be even more effective for this unique group of patients

    Genome Sequence of the Saprophyte Leptospira biflexa Provides Insights into the Evolution of Leptospira and the Pathogenesis of Leptospirosis

    Get PDF
    Leptospira biflexa is a free-living saprophytic spirochete present in aquatic environments. We determined the genome sequence of L. biflexa, making it the first saprophytic Leptospira to be sequenced. The L. biflexa genome has 3,590 protein-coding genes distributed across three circular replicons: the major 3,604 chromosome, a smaller 278-kb replicon that also carries essential genes, and a third 74-kb replicon. Comparative sequence analysis provides evidence that L. biflexa is an excellent model for the study of Leptospira evolution; we conclude that 2052 genes (61%) represent a progenitor genome that existed before divergence of pathogenic and saprophytic Leptospira species. Comparisons of the L. biflexa genome with two pathogenic Leptospira species reveal several major findings. Nearly one-third of the L. biflexa genes are absent in pathogenic Leptospira. We suggest that once incorporated into the L. biflexa genome, laterally transferred DNA undergoes minimal rearrangement due to physical restrictions imposed by high gene density and limited presence of transposable elements. In contrast, the genomes of pathogenic Leptospira species undergo frequent rearrangements, often involving recombination between insertion sequences. Identification of genes common to the two pathogenic species, L. borgpetersenii and L. interrogans, but absent in L. biflexa, is consistent with a role for these genes in pathogenesis. Differences in environmental sensing capacities of L. biflexa, L. borgpetersenii, and L. interrogans suggest a model which postulates that loss of signal transduction functions in L. borgpetersenii has impaired its survival outside a mammalian host, whereas L. interrogans has retained environmental sensory functions that facilitate disease transmission through water

    REGULATION OF MHC I MOLECULES IN GLIOBLASTOMA CELLS AND THE SENSITIZING OF NK CELLS

    No full text
    Immunotherapy has been established as an important area in the therapy of malignant diseases. Immunogenicity sufficient for immune recognition and subsequent elimination can be bypassed by tumors through altered and/or reduced expression levels of major histocompatibility complex class I (MHC I) molecules. Natural killer (NK) cells can eliminate tumor cells in a MHC I antigen presentation-independent manner by an array of activating and inhibitory receptors, which are promising candidates for immunotherapy. Here we summarize the latest findings in recognizing and regulating MHC I molecules that affect NK cell surveillance of glioblastoma cell
    corecore