6 research outputs found

    SNP-based analysis of neuroactive ligand-receptor interaction pathways implicates PGE2 as a novel mediator of antipsychotic treatment response : data from the CATIE study

    No full text
    Identifying specific neuroactive pathways involved in antipsychotic pharmacology is vital to developing improved therapeutic strategies for schizophrenia. Our results implicate the PGE2 pathway as a novel biomarker mediating response to three atypical antipsychotic drugs

    MBD-seq as a cost-effective approach for methylome-wide association studies: demonstration in 1500 case–control samples

    No full text
    AIM: We studied the use of methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq) as a cost-effective screening tool for methylome-wide association studies (MWAS). MATERIALS & METHODS: Because MBD-seq has not yet been applied on a large scale, we first developed and tested a pipeline for data processing using 1500 schizophrenia cases and controls plus 75 technical replicates with an average of 68 million reads per sample. This involved the use of technical replicates to optimize quality control for multi- and duplicate-reads, an in silico experiment to identify CpGs in loci with alignment problems, CpG coverage calculations based on multiparametric estimates of the fragment size distribution, a two-stage adaptive algorithm to combine data from correlated adjacent CpG sites, principal component analyses to control for confounders and new software tailored to handle the large data set. RESULTS: We replicated MWAS findings in independent samples using a different technology that provided single base resolution. In an MWAS of age-related methylation changes, one of our top findings was a previously reported robust association involving GRIA2. Our results also suggested that owing to the many confounding effects, a considerable challenge in MWAS is to identify those effects that are informative about disease processes. CONCLUSION: This study showed the potential of MBD-seq as a cost-effective tool in large-scale disease studies

    Genome-Wide Pharmacogenomic Study of Neurocognition As an Indicator of Antipsychotic Treatment Response in Schizophrenia

    Get PDF
    Neurocognitive deficits are a core feature of schizophrenia and, therefore, represent potentially critical outcome variables for assessing antipsychotic treatment response. We performed genome-wide association studies (GWAS) with 492K single nucleotide polymorphisms (SNPs) in a sample of 738 patients with schizophrenia from the Clinical Antipsychotic Trials of Intervention Effectiveness study. Outcome variables consisted of a neurocognitive battery administered at multiple time points over an 18-month period, measuring processing speed, verbal memory, vigilance, reasoning, and working memory domains. Genetic mediation of improvements in each of these five domains plus a composite neurocognitive measure was assessed for each of five antipsychotics (olanzapine, perphenazine, quetiapine, risperidone, and ziprasidone). Six SNPs achieved genome-wide significance using a pre-specified threshold that ensures, on average, only 1 in 10 findings is a false discovery. These six SNPs were located within, or in close proximity to, genes EHF, SLC26A9, DRD2, GPR137B, CHST8, and IL1A. The more robust findings, that is those significant across multiple neurocognitive domains and having adjacent SNPs showing evidence for association, were rs286913 at the EHF gene (p-value 6.99 × 10−8, q-value 0.034, mediating the effects of ziprasidone on vigilance), rs11240594 at SLC26A9 (p-value 1.4 × 10−7, q-value 0.068, mediating the effects of olanzapine on processing speed), and rs11677416 at IL1A (p-value 6.67 × 10−7, q-value 0.081, mediating the effects of olanzapine on working memory). This study has generated several novel candidate genes for antipsychotic response. However, our findings will require replication and functional validation. To facilitate replication efforts, we provide all GWAS p-values for download
    corecore