2 research outputs found

    Guidelines and framework to assess the feasibility of starting pre-emptive risk assessment of classical biological control agents

    Get PDF
    Non-native invasive arthropod species threaten biodiversity and food security worldwide, resulting in substantial economic, environmental, social and cultural costs. Classical biological control (CBC) is regarded as a cost-effective component of integrated pest management programmes to manage invasive arthropod pests sustainably. However, CBC programmes are traditionally conducted once a pest has established in a new environment, and invariably all research needed to achieve approval to release a biological control agent can take several years. During that time, adverse impacts of the pest accelerate. A pre-emptive biocontrol approach will provide the opportunity to develop CBC for invasive pests before they arrive in the country at risk of introduction and therefore enhance preparedness. A critical aspect of this approach is that risk assessment is carried out in advance of the arrival of the pest. Implementing pre-emptive biocontrol risk assessment means that natural enemies can be selected, screened in containment or abroad and potentially pre-approved prior to a pest establishing in the country at risk, thus improving CBC effectiveness. However, such an approach may not always be feasible. This contribution defines the fundamental prerequisites, principles, and objectives of pre-emptive biocontrol risk assessment. A set of guidelines and a decision framework were developed, which can be used to assess the feasibility of conducting a pre-emptive risk assessment for candidate biological control agents against high-risk arthropod pest

    Nocturnal parasitism of moth eggs by Trichogramma wasps

    No full text
    Parasitoid wasps of the genus Trichogramma are used worldwide as biological control agents against lepidopteran pests. Trichogramma wasps develop inside eggs of a wide range of host species, most of them moths. They are generally considered as diurnal insects. Here, we investigated whether Trichogramma wasps can also successfully parasitise host eggs at night under controlled laboratory conditions. Eggs of the moth Ephestia kuehniella were offered under dark conditions (scotophase) to females of Trichogramma brassicae and Trichogramma evanescens either from 9:00 PM to 9:00 AM or from 11:00 AM to 5:00 PM at four different temperatures (5°C, 10°C, 15°C and 20°C). Both species are known to parasitise E. kuehniella eggs in the photophase during daytime. The results show that T. brassicae did not parasitise eggs in the scotophase at night and only very few in the artificially induced scotophase during daytime from 10°C to 20°C. In contrast, T. evanescens parasitised more eggs in the dark both at night and artificially induced scotophase during daytime. Parasitism in the scotophase already started at 5°C, with more eggs being parasitised and more offspring being produced at higher temperatures. T. evanescens displayed higher parasitism activity in the induced scotophase during daytime than in the scotophase at night. The present study suggests that Trichogramma are capable of successfully parasitising host eggs at night, even at low temperatures, but that nocturnal activity with respect to parasitism varies between wasp species
    corecore