52 research outputs found

    Molecular and descriptive epidemiology of intestinal protozoan parasites of children and their pets in Cauca, Colombia: A cross-sectional study

    Get PDF
    Background: Parasitic infections, particularly those caused by protozoa, represent a considerable public health problem in developing countries. Blastocystis, Giardia duodenalis, Cryptosporidium spp. and the Entamoeba complex (Entamoeba histolytica, Entamoeba dispar and Entamoeba moshkovskii) are the most common etiological causes of intestinal parasitic infections. Methods: We carried out a descriptive cross-sectional study in school-age children attending a daycare institution in commune eight of Popayån, Cauca (Southwest Colombia). A total of 266 fecal samples were collected (258 from children and eight from pets). Blastocystis, G. duodenalis, Cryptosporidium spp. and the Entamoeba complex were identified by microscopy, quantitative real-time PCR (qPCR) and conventional PCR. The concordance of qPCR and microscopy was assessed using the Kappa index. Molecular characterization was conducted to identify Blastocystis subtypes (18S), G. duodenalis assemblages (tpi and gdh) and Cryptosporidium species/subtypes (18S and GP60). Potential associations between intestinal parasitism and sociodemographic factors were examined using bivariate analyses. Results: A total of 258 fecal samples from children were analyzed by microscopy and 255 samples were analyzed by qPCR. The prevalence of Blastocystis was between 25.19% (microscopy) and 39.22% (qPCR), that of G. duodenalis was between 8.14% (microscopy) and 10.59% (qPCR), that of Cryptosporidium spp. was estimated at 9.8% (qPCR), and that of the Entamoeba complex was between 0.39% (conventional PCR) and 0.78% (microscopy). The concordance between microscopy and qPCR was very low. Blastocystis ST1 (alleles 4, 8, and 80), ST2 (alleles 11, 12, and 15), ST3 (alleles 31, 34, 36, 38,57, and 151), and ST4 (alleles 42 and 91), G. duodenalis assemblages AII, BIII, BIV and D, C. parvum subtype IIa and C. hominis subtype IbA9G3R2 were identified. The only identified member of the Entamoeba complex corresponded to E. histolytica. No statistically significant association was identified between parasitic infection and any sociodemographic variable. Conclusion: This study revealed the usefulness of molecular methods to depict the transmission dynamics of parasitic protozoa in southwest Colombia. The presence of some of these protozoa in domestic animals may be involved in their transmission. © 2019 The Author(s)

    Molecular and descriptive epidemiology of intestinal protozoan parasites of children and their pets in Cauca, Colombia: A cross-sectional study

    No full text
    Background: Parasitic infections, particularly those caused by protozoa, represent a considerable public health problem in developing countries. Blastocystis, Giardia duodenalis, Cryptosporidium spp. and the Entamoeba complex (Entamoeba histolytica, Entamoeba dispar and Entamoeba moshkovskii) are the most common etiological causes of intestinal parasitic infections. Methods: We carried out a descriptive cross-sectional study in school-age children attending a daycare institution in commune eight of Popayån, Cauca (Southwest Colombia). A total of 266 fecal samples were collected (258 from children and eight from pets). Blastocystis, G. duodenalis, Cryptosporidium spp. and the Entamoeba complex were identified by microscopy, quantitative real-time PCR (qPCR) and conventional PCR. The concordance of qPCR and microscopy was assessed using the Kappa index. Molecular characterization was conducted to identify Blastocystis subtypes (18S), G. duodenalis assemblages (tpi and gdh) and Cryptosporidium species/subtypes (18S and GP60). Potential associations between intestinal parasitism and sociodemographic factors were examined using bivariate analyses. Results: A total of 258 fecal samples from children were analyzed by microscopy and 255 samples were analyzed by qPCR. The prevalence of Blastocystis was between 25.19% (microscopy) and 39.22% (qPCR), that of G. duodenalis was between 8.14% (microscopy) and 10.59% (qPCR), that of Cryptosporidium spp. was estimated at 9.8% (qPCR), and that of the Entamoeba complex was between 0.39% (conventional PCR) and 0.78% (microscopy). The concordance between microscopy and qPCR was very low. Blastocystis ST1 (alleles 4, 8, and 80), ST2 (alleles 11, 12, and 15), ST3 (alleles 31, 34, 36, 38,57, and 151), and ST4 (alleles 42 and 91), G. duodenalis assemblages AII, BIII, BIV and D, C. parvum subtype IIa and C. hominis subtype IbA9G3R2 were identified. The only identified member of the Entamoeba complex corresponded to E. histolytica. No statistically significant association was identified between parasitic infection and any sociodemographic variable. Conclusion: This study revealed the usefulness of molecular methods to depict the transmission dynamics of parasitic protozoa in southwest Colombia. The presence of some of these protozoa in domestic animals may be involved in their transmission. © 2019 The Author(s)

    Measuring KS0K± interactions using Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    We present the first ever measurements of femtoscopic correlations between the K0 S and K± particles. The analysis was performed on the data from Pb–Pb collisions at √sNN = 2.76 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for K0 SK− are found to be equal within the experimental uncertainties to those for K0 SK+. Comparing the results of the present study with those from published identical-kaon femtoscopic studies by ALICE, mass and coupling parameters for the a0 resonance are tested. Our results are also compatible with the interpretation of the a0 having a tetraquark structure instead of that of a diquar

    Λ c + production in pp collisions at s = 7 s=7 \sqrt{s}=7 TeV and in p-Pb collisions at s N N = 5.02 sNN=5.02 \sqrt{s_{\mathrm{NN}}}=5.02 TeV

    No full text

    Dielectron and heavy-quark production in inelastic and high-multiplicity proton–proton collisions at √s = 13 TeV

    No full text
    The measurement of dielectron production is presented as a function of invariant mass and transverse momentum (pT) at midrapidity (|ye| < 0.8) in proton–proton (pp) collisions at a centre-of-mass energy of √s = 13 TeV. The contributions from light-hadron decays are calculated from their measured cross sections in pp collisions at √s = 7 TeV or 13 TeV. The remaining continuum stems from correlated semileptonic decays of heavy-flavour hadrons. Fitting the data with templates from two different MC event generators, PYTHIA and POWHEG, the charm and beauty cross sections at midrapidity are extracted for the first time at this collision energy: dσccÂŻ/dy|y=0 = 974 ± 138 (stat.) ± 140 (syst.) ± 214(BR) ÎŒb and dσbbÂŻ /dy|y=0 = 79 ± 14 (stat.) ± 11 (syst.) ± 5(BR) ÎŒb using PYTHIA simulations and dσccÂŻ/dy|y=0 = 1417 ± 184 (stat.) ± 204 (syst.) ± 312(BR) ÎŒb and dσbbÂŻ /dy|y=0 = 48 ± 14 (stat.) ± 7 (syst.) ± 3(BR) ÎŒb for POWHEG. These values, whose uncertainties are fully correlated between the two generators, are consistent with extrapolations from lower energies. The different results obtained with POWHEG and PYTHIA imply different kinematic correlations of the heavy-quark pairs in these two generators. Furthermore, comparisons of dielectron spectra in inelastic events and in events collected with a trigger on high charged-particle multiplicities are presented in various pT intervals. The differences are consistent with the already measured scaling of light-hadron and open-charm production at high charged-particle multiplicity as a function of pT. Upper limits for the contribution of virtual direct photons are extracted at 90% confidence level and found to be in agreement with pQCD calculations
    • 

    corecore