1,917 research outputs found
Ultrafast QND measurements based on diamond-shape artificial atom
We propose a Quantum Non Demolition (QND) read-out scheme for a
superconducting artificial atom coupled to a resonator in a circuit QED
architecture, for which we estimate a very high measurement fidelity without
Purcell effect limitations. The device consists of two transmons coupled by a
large inductance, giving rise to a diamond-shape artificial atom with a logical
qubit and an ancilla qubit interacting through a cross-Kerr like term. The
ancilla is strongly coupled to a transmission line resonator. Depending on the
qubit state, the ancilla is resonantly or dispersively coupled to the
resonator, leading to a large contrast in the transmitted microwave signal
amplitude. This original method can be implemented with state of the art
Josephson parametric amplifier, leading to QND measurements in a few tens of
nanoseconds with fidelity as large as 99.9 %.Comment: 5 pages, 4 figure
Intermittent origin of the large violations of the fluctuation dissipation relations in an aging polymer glass
The fluctuation-dissipation relation (FDR) is measured on the dielectric
properties of a polymer glass (polycarbonate)in the range . It
is found that after a quench below the glass transition temperature the
fluctuation dissipation theorem is strongly violated. The amplitude and the
persistence time of this violation are decreasing functions of frequency. At
frequencies larger than 1Hz it persists for about . The origin of this
violation is a highly intermittent dynamics characterized by large
fluctuations. The relevance of these results for recent models of aging
dynamics are discussed.Comment: to be published in Europhysics Letter
Observation of transition from escape dynamics to underdamped phase diffusion in a Josephson junction
We have investigated the dynamics of underdamped Josephson junctions. In
addition to the usual crossover between macroscopic quantum tunnelling and
thermally activated (TA) behaviour we observe in our samples with relatively
small Josephson coupling E_J, for the first time, the transition from TA
behaviour to underdamped phase diffusion. Above the crossover temperature the
threshold for switching into the finite voltage state becomes extremely sharp.
We propose a (T,E_J) phase-diagram with various regimes and show that for a
proper description of it dissipation and level quantization in a metastable
well are crucial.Comment: 4 pages, 3 figure
Intermittency of glassy relaxation and the emergence of a non-equilibrium spontaneous measure in the aging regime
We consider heat exchange processes between non-equilibrium aging systems (in
their activated regime) and the thermal bath in contact. We discuss a scenario
where two different heat exchange processes concur in the overall heat
dissipation: a stimulated fast process determined by the temperature of the
bath and a spontaneous intermittent process determined by the fact that the
system has been prepared in a non-equilibrium state. The latter is described by
a probability distribution function (PDF) that has an exponential tail of width
given by a parameter , and satisfies a fluctuation theorem (FT)
governed by that parameter. The value of is proportional to the
so-called effective temperature, thereby providing a practical way to
experimentally measure it by analyzing the PDF of intermittent events.Comment: Latex file, 8 pages + 5 postscript figure
Constraining the geometry of AGN outflows with reflection spectroscopy
We collate active galactic nuclei (AGN) with reported detections of both
relativistic reflection and ultra-fast outflows. By comparing the inclination
of the inner disc from reflection with the line-of-sight velocity of the
outflow, we show that it is possible to meaningfully constrain the geometry of
the absorbing material. We find a clear relation between the velocity and
inclination, and demonstrate that it can potentially be explained either by
simple wind geometries or by absorption from the disc surface. Due to
systematic errors and a shortage of high- quality simultaneous measurements our
conclusions are tentative, but this study represents a proof-of-concept that
has great potential.Comment: 5 pages, 3 figures, accepted to MNRAS letter
Nanosecond quantum state detection in a current biased dc SQUID
This article presents our procedure to measure the quantum state of a dc
SQUID within a few nanoseconds, using an adiabatic dc flux pulse. Detection of
the ground state is governed by standard macroscopic quantum theory (MQT), with
a small correction due to residual noise in the bias current. In the two level
limit, where the SQUID constitutes a phase qubit, an observed contrast of 0.54
indicates a significant loss in contrast compared to the MQT prediction. It is
attributed to spurious depolarization (loss of excited state occupancy) during
the leading edge of the adiabatic flux measurement pulse. We give a simple
phenomenological relaxation model which is able to predict the observed
contrast of multilevel Rabi oscillations for various microwave amplitudes.Comment: 10 pages, 8 figure
Kerr non-linearity in a superconducting Josephson metamaterial
We present a detailed experimental and theoretical analysis of the dispersion
and non-linear Kerr frequency shifts of plasma modes in a one-dimensional
Josephson junction chain containing 500 SQUIDs in the regime of weak
nonlinearity. The measured low-power dispersion curve agrees perfectly with the
theoretical model if we take into account the Kerr renormalisation of the bare
frequencies and the long-range nature of the island charge screening by a
remote ground plane. We measured the self- and cross-Kerr shifts for the
frequencies of the eight lowest modes in the chain. We compare the measured
Kerr coefficients with theory and find good agreement
Finite-size effects and intermittency in a simple aging system
We study the intermittent dynamics and the fluctuations of the dynamic
correlation function of a simple aging system. Given its size and its
coherence length , the system can be divided into independent
subsystems, where , and is the dimension of space.
Each of them is considered as an aging subsystem which evolves according to
an activated dynamics between energy levels.
We compute analytically the distribution of trapping times for the global
system, which can take power-law, stretched-exponential or exponential forms
according to the values of and the regime of times considered. An effective
number of subsystems at age , , can be defined, which
decreases as increases, as well as an effective coherence length,
, where characterizes the trapping
times distribution of a single subsystem. We also compute the probability
distribution functions of the time intervals between large decorrelations,
which exhibit different power-law behaviours as increases (or
decreases), and which should be accessible experimentally.
Finally, we calculate the probability distribution function of the two-time
correlator.
We show that in a phenomenological approach, where is replaced by the
effective number of subsystems , the same qualitative behaviour
as in experiments and simulations of several glassy systems can be obtained.Comment: 15 pages, 6 figures, published versio
- …
