1,545 research outputs found

    Variable electrostatic transformer: controllable coupling of two charge qubits

    Full text link
    We propose and investigate a novel method for the controlled coupling of two Josephson charge qubits by means of a variable electrostatic transformer. The value of the coupling capacitance is given by the discretized curvature of the lowest energy band of a Josephson junction, which can be positive, negative, or zero. We calculate the charging diagram of the two-qubit system that reflects the transition from positive to negative through vanishing coupling. We also discuss how to construct a phase gate making use of the controllable coupling.Comment: final version, to appear in Phys. Rev. Let

    Submicrosecond comparisons of time standards via the Navigation Technology Satellites (NTS)

    Get PDF
    An interim demonstration was performed of the time transfer capability of the NAVSTAR GPS system using a single NTS satellite. Measurements of time difference (pseudo-range) are made from the NTS tracking network and at the participating observatories. The NTS network measurements are used to compute the NTS orbit trajectory. The central NTS tracking station has a time link to the Naval Observatory UTC (USNO,MC1) master clock. Measurements are used with the NTS receiver at the remote observatory, the time transfer value UTC (USNO,MC1)-UTC (REMOTE, VIA NTS) is calculated. Intercomparisons were computed using predicted values of satellite clock offset and ephemeus

    Study of Space Station propulsion system resupply and repair Final report

    Get PDF
    Resupply and repair capabilities for orbital space station bipropellant propulsion syste

    Thermal noise properties of two aging materials

    Full text link
    In this lecture we review several aspects of the thermal noise properties in two aging materials: a polymer and a colloidal glass. The measurements have been performed after a quench for the polymer and during the transition from a fluid-like to a solid-like state for the gel. Two kind of noise has been measured: the electrical noise and the mechanical noise. For both materials we have observed that the electric noise is characterized by a strong intermittency, which induces a large violation of the Fluctuation Dissipation Theorem (FDT) during the aging time, and may persist for several hours at low frequency. The statistics of these intermittent signals and their dependance on the quench speed for the polymer or on sample concentration for the gel are studied. The results are in a qualitative agreement with recent models of aging, that predict an intermittent dynamics. For the mechanical noise the results are unclear. In the polymer the mechanical thermal noise is still intermittent whereas for the gel the violation of FDT, if it exists, is extremely small.Comment: to be published in the Proceedings of the XIX Sitges Conference on ''Jammming, Yielding and Irreversible Deformation in Condensed Matter'', M.-C.Miguel and M. Rubi eds.,Springer Verlag, Berli

    Superconducting Qubits Coupled to Nanoelectromechanical Resonators: An Architecture for Solid-State Quantum Information Processing

    Full text link
    We describe the design for a scalable, solid-state quantum-information-processing architecture based on the integration of GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which has the potential for demonstrating a variety of single- and multi-qubit operations critical to quantum computation. The computational qubits are eigenstates of large-area, current-biased Josephson junctions, manipulated and measured using strobed external circuitry. Two or more of these phase qubits are capacitively coupled to a high-quality-factor piezoelectric nanoelectromechanical disk resonator, which forms the backbone of our architecture, and which enables coherent coupling of the qubits. The integrated system is analogous to one or more few-level atoms (the Josephson junction qubits) in an electromagnetic cavity (the nanomechanical resonator). However, unlike existing approaches using atoms in electromagnetic cavities, here we can individually tune the level spacing of the ``atoms'' and control their ``electromagnetic'' interaction strength. We show theoretically that quantum states prepared in a Josephson junction can be passed to the nanomechanical resonator and stored there, and then can be passed back to the original junction or transferred to another with high fidelity. The resonator can also be used to produce maximally entangled Bell states between a pair of Josephson junctions. Many such junction-resonator complexes can assembled in a hub-and-spoke layout, resulting in a large-scale quantum circuit. Our proposed architecture combines desirable features of both solid-state and cavity quantum electrodynamics approaches, and could make quantum information processing possible in a scalable, solid-state environment.Comment: 20 pages, 14 separate low-resolution jpeg figure
    • …
    corecore