84 research outputs found

    Direct Measurement of the Top Quark Charge at Hadron Colliders

    Get PDF
    We consider photon radiation in tbar-t events at the upgraded Fermilab Tevatron and the CERN Large Hadron Collider (LHC) as a tool to measure the electric charge of the top quark. We analyze the contributions of tbar-t-gamma production and radiative top quark decays to p-p, pbar-p -> gamma l^+/- nu bbar-b jj, assuming that both b-quarks are tagged. With 20~fb^{-1} at the Tevatron, the possibility that the ``top quark'' discovered in Run I is actually an exotic charge -4/3 quark can be ruled out at the 95% confidence level. At the LHC, it will be possible to determine the charge of the top quark with an accuracy of about 10%.Comment: Revtex, 24 pages, 2 tables, 9 figure

    Finite-size and correlation-induced effects in Mean-field Dynamics

    Full text link
    The brain's activity is characterized by the interaction of a very large number of neurons that are strongly affected by noise. However, signals often arise at macroscopic scales integrating the effect of many neurons into a reliable pattern of activity. In order to study such large neuronal assemblies, one is often led to derive mean-field limits summarizing the effect of the interaction of a large number of neurons into an effective signal. Classical mean-field approaches consider the evolution of a deterministic variable, the mean activity, thus neglecting the stochastic nature of neural behavior. In this article, we build upon two recent approaches that include correlations and higher order moments in mean-field equations, and study how these stochastic effects influence the solutions of the mean-field equations, both in the limit of an infinite number of neurons and for large yet finite networks. We introduce a new model, the infinite model, which arises from both equations by a rescaling of the variables and, which is invertible for finite-size networks, and hence, provides equivalent equations to those previously derived models. The study of this model allows us to understand qualitative behavior of such large-scale networks. We show that, though the solutions of the deterministic mean-field equation constitute uncorrelated solutions of the new mean-field equations, the stability properties of limit cycles are modified by the presence of correlations, and additional non-trivial behaviors including periodic orbits appear when there were none in the mean field. The origin of all these behaviors is then explored in finite-size networks where interesting mesoscopic scale effects appear. This study leads us to show that the infinite-size system appears as a singular limit of the network equations, and for any finite network, the system will differ from the infinite system

    The influence of liver dysfunction on cyclosporine pharmacokinetics -A comparison between 70 per cent hepatectomy and complete bile duct ligation in dogs-

    Get PDF
    The influence of experimentally induced hepatic dysfunction on the pharmacokinetics of Cyclosporine A (CsA) was determined in dogs. The pharmacokinetics of oral (PO) and intravenous (IV) CsA were studied before and after 70 per cent hepatectomy or complete bile duct ligation (CBDL). Changes in liver function were monitored by serial measurements of serum bilirubin, and by the maximum removal rate (Rmax) and plasma disappearance rate (ICG-K) of indocyanine green (ICG). Concentrations of CsA in whole blood were measured by HPLC. Seventy per cent hepatectomy caused significant liver dysfunction: the ICG-Rmax decreased by 47.7±7.1 per cent (mean±SD) and the ICG-K decreased by 61.3±9.7 per cent during the first week after hepatectomy. At the same time, the systemic clearance (CLs) of IV-CsA decreased by 43.9±8.2 per cent, the area under the concentration curve (AUC) of IV-CsA increased by 35.4±20.8 per cent and the bioavailability of CsA decreased by 26.4±14.8 per cent. CBDL also induced significant liver dysfunction: the ICG-Rmax decreased by 39.1±12.8 per cent and the ICG-K decreased by 65.6±3.6 per cent in the second week after the operation. During the same period, the AUC of PO-CsA decreased by 69.9±10.7 per cent and the bioavailability of CsA also decreased markedly by 73.9±15.6 per cent. These data indicate that hepatic impairment significantly influences the pharmacokinetics of CsA, not only by the changes in intestinal absorption, but also by those in hepatic, metabolism. Dose adjustment is therefore necessary in the presence of hepatic dysfunction in order to maintain an adequate blood concentration of CsA without causing side effects. © 1989 The Japan Surgical Society

    Avalanches in a Stochastic Model of Spiking Neurons

    Get PDF
    Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons). When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be “critical” for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality

    Balanced Input Allows Optimal Encoding in a Stochastic Binary Neural Network Model: An Analytical Study

    Get PDF
    Recent neurophysiological experiments have demonstrated a remarkable effect of attention on the underlying neural activity that suggests for the first time that information encoding is indeed actively influenced by attention. Single cell recordings show that attention reduces both the neural variability and correlations in the attended condition with respect to the non-attended one. This reduction of variability and redundancy enhances the information associated with the detection and further processing of the attended stimulus. Beyond the attentional paradigm, the local activity in a neural circuit can be modulated in a number of ways, leading to the general question of understanding how the activity of such circuits is sensitive to these relatively small modulations. Here, using an analytically tractable neural network model, we demonstrate how this enhancement of information emerges when excitatory and inhibitory synaptic currents are balanced. In particular, we show that the network encoding sensitivity -as measured by the Fisher information- is maximized at the exact balance. Furthermore, we find a similar result for a more realistic spiking neural network model. As the regime of balanced inputs has been experimentally observed, these results suggest that this regime is functionally important from an information encoding standpoint
    corecore