2,056 research outputs found

    Structure-specified H∞ loop shaping control for balancing of bicycle robots: A particle swarm optimization approach

    Get PDF
    In this paper, the particle swarm optimization (PSO) algorithm was used to design the structure-specified H∞ loop shaping controllers for balancing of bicycle robots. The structure-specified H∞ loop shaping controller design normally leads to a complex optimization problem. PSO is an efficient meta-heuristic search which is used to solve multi-objectives and non-convex optimizations. A model-based systematic procedure for designing the particle swarm optimization-based structure-specified H∞ loop shaping controllers was proposed in this research. The structure of the obtained controllers are therefore simpler. The simulation and experimental results showed that the robustness and efficiency of the proposed controllers was gained when compared with the proportional plus derivative (PD) as well as conventional H∞ loop shaping controller. The simulation results also showed a better efficiency of the developed control algorithm compared to the Genetic Algorithm based one

    Necessary Conditions for Non-Intersection of Collections of Sets

    Full text link
    This paper continues studies of non-intersection properties of finite collections of sets initiated 40 years ago by the extremal principle. We study elementary non-intersection properties of collections of sets, making the core of the conventional definitions of extremality and stationarity. In the setting of general Banach/Asplund spaces, we establish new primal (slope) and dual (generalized separation) necessary conditions for these non-intersection properties. The results are applied to convergence analysis of alternating projections.Comment: 26 page

    Liminal experience of East Asian backpackers

    Get PDF
    Acknowledging the increasing popularity of independent travel from East Asia, this article explores the backpacking experience of young travellers of the region, from a socio-anthropological angle. Using liminality theory as a guideline and adopting a qualitative investigative approach, 31 interviews with East Asian backpackers were conducted. The findings suggest there are dual facets of the liminal experiences of the backpackers. On one hand, young travellers were motivated to escape from temporal, spatial and social pressures at home. On the other, their narratives reflected a strong commitment to home through a sense of filial piety, an awareness of their identity and positive evaluation of home. These findings advance our understanding of the liminal experiences in an Asian backpacking context

    Identifying cell class specific losses from serially generated electroretinogram components

    Get PDF
    Purpose. Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from “upstream” neurons or may indicate a direct loss to that neural generator. We propose an approach that addresses this issue by defining ERG gain relationships. Methods. Regression analyses between two serial ERG parameters in a control cohort of rats are used to define gain relationships. These gains are then applied to two models of retinal disease. Results. The to gain is unity whereas the to and to gains are greater than unity, indicating “amplification” (). Timing relationships show amplification between to and compression for to and to , (). Application of these gains to -3-deficiency indicates that all timing changes are downstream of photoreceptor changes, but a direct pSTR amplitude loss occurs (). Application to diabetes indicates widespread inner retinal dysfunction which cannot be attributed to outer retinal changes (). Conclusions. This simple approach aids in the interpretation of inner retinal ERG changes by taking into account gain characteristics found between successive ERG components of normal animals

    Using the electroretinogram to understand how intraocular pressure elevation affects the rat retina

    Get PDF
    Intraocular pressure (IOP) elevation is a key risk factor for glaucoma. Our understanding of the effect that IOP elevation has on the eye has been greatly enhanced by the application of the electroretinogram (ERG). In this paper, we describe how the ERG in the rodent eye is affected by changes in IOP magnitude, duration, and number of spikes. We consider how the variables of blood pressure and age can modify the effect of IOP elevation on the ERG. Finally, we contrast the effects that acute and chronic IOP elevation can have on the rodent ERG

    A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production.

    Full text link
    The quest for a chemical surfactant substitute has been fuelled by increased environmental awareness. The benefits that biosurfactants present like biodegradability, and biocompatibility over their chemical and synthetic counterparts has contributed immensely to their popularity and use in various industries such as petrochemicals, mining, metallurgy, agrochemicals, fertilizers, beverages, cosmetics, etc. With the growing demand for biosurfactants, researchers are looking for low-cost waste materials to use them as substrates, which will lower the manufacturing costs while providing waste management services as an add-on benefit. The use of low-cost substrates will significantly reduce the cost of producing biosurfactants. This paper discusses the use of various feedstocks in the production of biosurfactants, which not only reduces the cost of waste treatment but also provides an opportunity to profit from the sale of the biosurfactant. Furthermore, it includes state-of-the-art information about employing municipal solid waste as a sustainable feedstock for biosurfactant production, which has not been simultaneously covered in many published literatures on biosurfactant production from different feedstocks. It also addresses the myriad of other issues associated with the processing of biosurfactants, as well as the methods used to address these issues and perspectives, which will move society towards cleaner production

    Introducing an agricultural app to vegetable farmers: A pilot study in Lam Dong, Vietnam

    Get PDF

    Comparison of some Reduced Representation Approximations

    Full text link
    In the field of numerical approximation, specialists considering highly complex problems have recently proposed various ways to simplify their underlying problems. In this field, depending on the problem they were tackling and the community that are at work, different approaches have been developed with some success and have even gained some maturity, the applications can now be applied to information analysis or for numerical simulation of PDE's. At this point, a crossed analysis and effort for understanding the similarities and the differences between these approaches that found their starting points in different backgrounds is of interest. It is the purpose of this paper to contribute to this effort by comparing some constructive reduced representations of complex functions. We present here in full details the Adaptive Cross Approximation (ACA) and the Empirical Interpolation Method (EIM) together with other approaches that enter in the same category

    Modelling Li+ Ion Battery Electrode Properties

    Get PDF
    We formulated two detailed models for an electrolytic cell with particulate electrodes based on a lithium atom concentration dependent Butler-Volmer condition at the interface between electrode particles and the electrolyte. The first was based on a dilute-ion assumption for the electrolyte, while the second assumed that Li ions are present in excess. For the first, we used the method of multiple scales to homogenize this model over the microstructure, formed by the small lithium particles in the electrodes. For the second, we gave rigorous bounds for the effective electrochemical conductivity for a linearized case. We expect similar results and bounds for the "full nonlinear problem" because variational results are generally not adversely affected by a sinh term. Finally we used the asymptotic methods, based on parameters estimated from the literature, to attain a greatly simplified one-dimensional version of the original homogenized model. This simplified model accounts for the fact that diffusion of lithium atoms within individual electrode particles is relatively much faster than that of lithium ions across the whole cell so that lithium ion diffusion is what limits the performance of the battery. However, since most of the potential drop occurs across the Debye layers surrounding each electrode particle, lithium ion diffusion only significantly affects cell performance if there is more or less complete depletion of lithium ions in some region of the electrolyte which causes a break in the current flowing across the cell. This causes catastrophic failure. Providing such failure does not occur the potential drop across the cell is determined by the concentration of lithium atoms in the electrode particles. Within each electrode lithium atom concentration is, to leading order, a function of time only and not of position within the electrode. The depletion of electrode lithium atom concentration is directly proportional to the current being drawn off the cell. This leads one to expect that the potential of the cell gradually drops as current is drawn of it. We would like to emphasize that all the homogenization methods employed in this work give a systematic approach for investigating the effect that changes in the microstructure have on the behaviour of the battery. However, due to lack of time, we have not used this method to investigate particular particle geometries
    corecore