6 research outputs found

    Prehistoric pathways to Anthropocene adaptation: Evidence from the Red River Delta, Vietnam

    Get PDF
    Over the past twenty years, government advisory bodies have placed increasing emphasis on the need for adaptive measures in response to the effects of human-induced climate change. Integrated Assessment Models (IAMs), which incorporate macroeconomic and climate variables, feature prominently in advisory content, though they rarely draw on data from outside strictly constrained hypothetical systems. This has led to assertions that they are not well-suited to approximate complex systemic human-environment processes. Modular, interdisciplinary approaches have offered a way to address this shortcoming; however, beyond climate records, prehistoric data continue to be under-utilised in developing such models. In this paper we highlight the contribution that archaeology and palaeoecology can make to the development of the next generation IAMs that are expected to enhance provision for more local and pro-active adaptations to future climate change. We present data from one of Southeast Asia’s most heavily developed river deltas: the Red River (Song Hong) Delta, in Vietnam and localised analysis from the Tràng An Landscape Complex World Heritage Site, on the delta’s southern margin. Comparison is made between Shared Socio-economic Pathways (SSP) 5–8.5 and SSP2–4.5 emission projection models and the Mid-Holocene inundation of the Red River Basin. We highlight the value to taking a scientific long view of coastal evolution through an illustrative set of eight research foci where palaeo-data can bring new and localised empirical data to bear on future risk management planning. We proceed to demonstrate the applicability of palaeoenvironmental, zooarchaeological and historical evidence to management and the development of sustainable conservation strategies using Tràng An as a case study. In so doing, we further highlight the importance of knowledge exchange between scientific, corporate, non-governmental, local, and state stakeholders to achieve tangible results on the ground

    Prehistoric pathways to Anthropocene adaptation: Evidence from the Red River Delta, Vietnam

    Get PDF
    Over the past twenty years, government advisory bodies have placed increasing emphasis on the need for adaptive measures in response to the effects of human-induced climate change. Integrated Assessment Models (IAMs), which incorporate macroeconomic and climate variables, feature prominently in advisory content, though they rarely draw on data from outside strictly constrained hypothetical systems. This has led to assertions that they are not well-suited to approximate complex systemic human-environment processes. Modular, interdisciplinary approaches have offered a way to address this shortcoming; however, beyond climate records, prehistoric data continue to be under-utilised in developing such models. In this paper we highlight the contribution that archaeology and palaeoecology can make to the development of the next generation IAMs that are expected to enhance provision for more local and pro-active adaptations to future climate change. We present data from one of Southeast Asia’s most heavily developed river deltas: the Red River (Song Hong) Delta, in Vietnam and localised analysis from the Tràng An Landscape Complex World Heritage Site, on the delta’s southern margin. Comparison is made between Shared Socio-economic Pathways (SSP) 5–8.5 and SSP2–4.5 emission projection models and the Mid-Holocene inundation of the Red River Basin. We highlight the value to taking a scientific long view of coastal evolution through an illustrative set of eight research foci where palaeo-data can bring new and localised empirical data to bear on future risk management planning. We proceed to demonstrate the applicability of palaeoenvironmental, zooarchaeological and historical evidence to management and the development of sustainable conservation strategies using Tràng An as a case study. In so doing, we further highlight the importance of knowledge exchange between scientific, corporate, non-governmental, local, and state stakeholders to achieve tangible results on the ground

    Prehistoric pathways to Anthropocene adaptation: Evidence from the Red River Delta, Vietnam

    Get PDF
    Over the past twenty years, government advisory bodies have placed increasing emphasis on the need for adaptive measures in response to the effects of human-induced climate change. Integrated Assessment Models (IAMs), which incorporate macroeconomic and climate variables, feature prominently in advisory content, though they rarely draw on data from outside strictly constrained hypothetical systems. This has led to assertions that they are not well-suited to approximate complex systemic human-environment processes. Modular, interdisciplinary approaches have offered a way to address this shortcoming; however, beyond climate records, prehistoric data continue to be under-utilised in developing such models. In this paper we highlight the contribution that archaeology and palaeoecology can make to the development of the next generation IAMs that are expected to enhance provision for more local and pro-active adaptations to future climate change. We present data from one of Southeast Asia’s most heavily developed river deltas: the Red River (Song Hong) Delta, in Vietnam and localised analysis from the Tràng An Landscape Complex World Heritage Site, on the delta’s southern margin. Comparison is made between Shared Socio-economic Pathways (SSP) 5–8.5 and SSP2–4.5 emission projection models and the Mid-Holocene inundation of the Red River Basin. We highlight the value to taking a scientific long view of coastal evolution through an illustrative set of eight research foci where palaeo-data can bring new and localised empirical data to bear on future risk management planning. We proceed to demonstrate the applicability of palaeoenvironmental, zooarchaeological and historical evidence to management and the development of sustainable conservation strategies using Tràng An as a case study. In so doing, we further highlight the importance of knowledge exchange between scientific, corporate, non-governmental, local, and state stakeholders to achieve tangible results on the ground

    Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control

    Get PDF
    Background: Introduced Wolbachia bacteria can influence the susceptibility of Aedes aegypti mosquitoes to arboviral infections as well as having detrimental effects on host fitness. Previous field trials demonstrated that the wMel strain of Wolbachia effectively and durably invades Ae. aegypti populations. Here we report on trials of a second strain, wMelPop-PGYP Wolbachia, in field sites in northern Australia (Machans Beach and Babinda) and central Vietnam (Tri Nguyen, Hon Mieu Island), each with contrasting natural Ae. aegypti densities.\ud \ud \ud Methods: Mosquitoes were released at the adult or pupal stages for different lengths of time at the sites depending on changes in Wolbachia frequency as assessed through PCR assays of material collected through Biogents-Sentinel (BG-S) traps and ovitraps. Adult numbers were also monitored through BG-S traps. Changes in Wolbachia frequency were compared across hamlets or house blocks.\ud \ud Results: Releases of adult wMelPop-Ae. aegypti resulted in the transient invasion of wMelPop in all three field sites. Invasion at the Australian sites was heterogeneous, reflecting a slower rate of invasion in locations where background mosquito numbers were high. In contrast, invasion across Tri Nguyen was relatively uniform. After cessation of releases, the frequency of wMelPop declined in all sites, most rapidly in Babinda and Tri Nguyen. Within Machans Beach the rate of decrease varied among areas, and wMelPop was detected for several months in an area with a relatively low mosquito density.\ud \ud Conclusions: These findings highlight challenges associated with releasing Wolbachia-Ae. aegypti combinations with low fitness, albeit strong virus interference properties, as a means of sustainable control of dengue virus transmission
    corecore