21 research outputs found

    Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses

    Get PDF
    BACKGROUND: A novel variant of influenza A (H1N1) is causing a pandemic and, although the illness is usually mild, there are concerns that its virulence could change through reassortment with other influenza viruses. This is of greater concern in parts of Southeast Asia, where the population density is high, influenza is less seasonal, human-animal contact is common and avian influenza is still endemic. METHODS: We developed an age- and spatially-structured mathematical model in order to estimate the potential impact of pandemic H1N1 in Vietnam and the opportunities for reassortment with animal influenza viruses. The model tracks human infection among domestic animal owners and non-owners and also estimates the numbers of animals may be exposed to infected humans. RESULTS: In the absence of effective interventions, the model predicts that the introduction of pandemic H1N1 will result in an epidemic that spreads to half of Vietnam's provinces within 57 days (interquartile range (IQR): 45-86.5) and peaks 81 days after introduction (IQR: 62.5-121 days). For the current published range of the 2009 H1N1 influenza's basic reproductive number (1.2-3.1), we estimate a median of 410,000 cases among swine owners (IQR: 220,000-670,000) with 460,000 exposed swine (IQR: 260,000-740,000), 350,000 cases among chicken owners (IQR: 170,000-630,000) with 3.7 million exposed chickens (IQR: 1.9 M-6.4 M), and 51,000 cases among duck owners (IQR: 24,000 - 96,000), with 1.2 million exposed ducks (IQR: 0.6 M-2.1 M). The median number of overall human infections in Vietnam for this range of the basic reproductive number is 6.4 million (IQR: 4.4 M-8.0 M). CONCLUSION: It is likely that, in the absence of effective interventions, the introduction of a novel H1N1 into a densely populated country such as Vietnam will result in a widespread epidemic. A large epidemic in a country with intense human-animal interaction and continued co-circulation of other seasonal and avian viruses would provide substantial opportunities for H1N1 to acquire new genes

    The International Limits and Population at Risk of Plasmodium vivax Transmission in 2009

    Get PDF
    Growing evidence shows that Plasmodium vivax malaria is clinically less benign than has been commonly believed. In addition, it is the most widely distributed species of human malaria and is likely to cause more illness in certain regions than the more extensively studied P. falciparum malaria. Understanding where P. vivax transmission exists and measuring the number of people who live at risk of infection is a fundamental first step to estimating the global disease toll. The aim of this paper is to generate a reliable map of the worldwide distribution of this parasite and to provide an estimate of how many people are exposed to probable infection. A geographical information system was used to map data on the presence of P. vivax infection and spatial information on climatic conditions that impede transmission (low ambient temperature and extremely arid environments) in order to delineate areas where transmission was unlikely to take place. This map was combined with population distribution data to estimate how many people live in these areas and are, therefore, exposed to risk of infection by P. vivax malaria. The results show that 2.85 billion people were exposed to some level of risk of transmission in 2009

    Topology optimization for a large-scale truss bridge using a hybrid metaheuristic search algorithm

    No full text
    This paper introduces a simple and effective method to optimize the weight and geometry of truss members of a large-scale truss bridge. Design variables comprise the redundant forces acting on the structure and the cross-sectional dimensions of truss members. The objective function is constraints on member stresses chosen to minimize the deviation between calculated and desired results. To increase global search capabilities, a hybrid metaheuristic algorithm (HGAPSO) combining genetic algorithm (GA) and particle swarm optimization (PSO) is employed to look for the best solution. The results show that HGAPSO not only provides the considered structure with a lighter weight than the original design but also outperforms the traditional optimization algorithm (GA, PSO) in terms of the search capacity for the most optimal solution

    Social and environmental determinants of malaria in space and time in Viet Nam

    No full text
    The malaria burden in Viet Nam has been in decline in recent decades, but localised areas of high transmission remain. We used spatiotemporal analytical tools to determine the social and environmental drivers of malaria risk and to identify residual high-risk areas where control and surveillance resources can be targeted. Counts of reported Plasmodium falciparum and Plasmodium vivax malaria cases by month (January 2007-December 2008) and by district were assembled. Zero-inflated Poisson regression models were developed in a Bayesian framework. Models had the percentage of the district's population living below the poverty line, percent of the district covered by forest, median elevation, median long-term average precipitation, and minimum temperature included as fixed effects, and terms for temporal trend and residual district-level spatial autocorrelation. Strong temporal and spatial heterogeneity in counts of malaria cases was apparent. Poverty and forest cover were significantly associated with an increased count of malaria cases but the magnitude and direction of associations between climate and malaria varied by socio-ecological zone. There was a declining trend in counts of malaria cases during the study period. After accounting for the social and environmental fixed effects, substantial spatial heterogeneity was still evident. Unmeasured factors which may contribute to this residual variation include malaria control activities, population migration and accessibility to health care. Forest-related activities and factors encompassed by poverty indicators are major drivers of malaria incidence in Viet Nam

    The International Limits and Population at Risk of \u3ci\u3ePlasmodium vivax\u3c/i\u3e Transmission in 2009

    Get PDF
    Background: A research priority for Plasmodium vivax malaria is to improve our understanding of the spatial distribution of risk and its relationship with the burden of P. vivax disease in human populations. The aim of the research outlined in this article is to provide a contemporary evidence-based map of the global spatial extent of P. vivax malaria, together with estimates of the human population at risk (PAR) of any level of transmission in 2009. Methodology: The most recent P. vivax case-reporting data that could be obtained for all malaria endemic countries were used to classify risk into three classes: malaria free, unstable (\u3e0.1 case per 1,000 people per annum (p.a.)) and stable (\u3c0.1 case per 1,000 p.a.) P. vivax malaria transmission. Risk areas were further constrained using temperature and aridity data based upon their relationship with parasite and vector bionomics. Medical intelligence was used to refine the spatial extent of risk in specific areas where transmission was reported to be absent (e.g., large urban areas and malaria-free islands). The PAR under each level of transmission was then derived by combining the categorical risk map with a high resolution population surface adjusted to 2009. The exclusion of large Duffy negative populations in Africa from the PAR totals was achieved using independent modelling of the gene frequency of this genetic trait. It was estimated that 2.85 billion people were exposed to some risk of P. vivax transmission in 2009, with 57.1% of them living in areas of unstable transmission. The vast majority (2.59 billion, 91.0%) were located in Central and South East (CSE) Asia, whilst the remainder were located in America (0.16 billion, 5.5%) and in the Africa+ region (0.10 billion, 3.5%). Despite evidence of ubiquitous risk of P. vivax infection in Africa, the very high prevalence of Duffy negativity throughout Central and West Africa reduced the PAR estimates substantially. Conclusions: After more than a century of development and control, P. vivax remains more widely distributed than P. falciparum and is a potential cause of morbidity and mortality amongst the 2.85 billion people living at risk of infection, the majority of whom are in the tropical belt of CSE Asia. The probability of infection is reduced massively across Africa by the frequency of the Duffy negative trait, but transmission does occur on the continent and is a concern for Duffy positive locals and travellers. The final map provides the spatial limits on which the endemicity of P. vivax transmission can be mapped to support future cartographic-based burden estimations

    Correction: A World Malaria Map: Plasmodium falciparum Endemicity in 2007

    Get PDF
    BACKGROUND: Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. METHODS AND FINDINGS: A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2–10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR(2−10) ≤ 5%). The vast majority (88%) of those living under stable risk in CSE Asia were also in this low endemicity class; a small remainder (11%) were in the intermediate endemicity class (PfPR(2−10) > 5 to < 40%); and the remaining fraction (1%) in high endemicity (PfPR(2−10) ≥ 40%) areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion), with a smaller number (0.11 billion) at low stable risk. CONCLUSIONS: High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are found in the Americas. Low endemicity is also widespread in CSE Asia, but pockets of intermediate and very rarely high transmission remain. There are therefore significant opportunities for malaria control in Africa and for malaria elimination elsewhere. This 2007 global P. falciparum malaria endemicity map is the first of a series with which it will be possible to monitor and evaluate the progress of this intervention process
    corecore