2,713 research outputs found

    Calibration of the ER-2 meteorological measurement system

    Get PDF
    The Meteorological Measurement System (MMS) on the high altitude ER-2 aircraft was developed specifically for atmospheric research. The MMS provides accurate measurements of pressure, temperature, wind vector, position (longitude, latitude, altitude), pitch, roll, heading, angle of attack, angle of sideslip, true airspeed, aircraft eastward velocity, northward velocity, vertical acceleration, and time, at a sample rate of 5/s. MMS data products are presented in the form of either 5 or 1 Hz time series. The 1 Hz data stream, generally used by ER-2 investigators, is obtained from the 5 Hz data stream by filtering and desampling. The method of measurement of the meteorological parameters is given and the results of their analyses are discussed

    A stochastic model of the influence of buffer gas collisions on Mollow spectra

    Full text link
    In this paper we consider the influence of collisional fluctuations on the Mollow spectra of resonance fluorescence (RF). The fluctuations are taken into account by a simple shift of the constant detuning, involved in a set of optical Bloch equations by collision frequency noise which is modelled by a two-step random telegraph signal (RTS). We consider in detail the Mollow spectra for RF in the case of an arbitrary detuning of the laser frequency, where the emitter is a member of a statistical ensemble in thermodynamic equilibrium with the buffer gas at temperature TT which is treated as a colored environment, and velocity vv is distributed with the Maxwell-Boltzmann density

    The meteorological measurement system on the NASA ER-2 aircraft

    Get PDF
    A Meteorological Measurement System (MMS) was designed for the high-altitude ER-2 aircraft (NASA 706). Through dedicated instrumentation installed on the aircraft and repeated calibrations, the MMS provides accurate in situ measurements of free-stream pressure, temperature, and the wind vector. The MMS has participated in two major high-altitude scientific expeditions, the Stratosphere-Troposphere Exchange Project (STEP) based in northern Australia and the Airborne Antarctic Ozone Experiment (AAOE) based in southern Chile. Key MMS subsystems are described. The MMS consists of a dedicated inertial navigation system (INS), a randome differential pressure system, a data acquisition system, and air data instrumentation. The MMS incorporates a high-resolution INS (Litton LIN-72RH model), which is specially configured and is updated at 25 Hz. The differential pressure system, consisting of two sets of pressure ports and transducers, is installed in the ER-2 radome to provide sensitive measurements of the airflow angles (angle of attack and angle of sideslip). The data acquisition system was designed to meet aircraft requirements of compactness and light weight (2 cu ft 50 lb) and for MMS requirements to sample, control, process, and store 45 parameters (some redundant) at a sampling rate up to 10 Hz. The MMS data are stored both in a tape recorder (20 MB) and a hermatically-sealed winchester hard disc (10 MB). Special and redundant instrumentation for temperature and pressure measurements were also installed on the aircraft

    The NASA-ER2 meteorological measurement system: Instrumentaion, calibration and intercomparison results

    Get PDF
    The NASA ER-2 aircraft is used as a platform for high altitude atmospheric missions. The Meteorological Measurement System (MMS) was designed specifically for atmospheric research to provide accurate, fast response, in situ measurements of pressure, temperature, and the three dimensional wind vector. The MMS consists of three subsystems: an air motion sensing system to measure the velocity of the air with respect to the aircraft, a high resolution Inertial Navigation System (INS) to measure the velocity of the aircraft with respect to the Earth, and a Data Acquisition System, to sample, process and record the measured quantities. Details of each of these systems are given. The location of the MMS instrumentation is illustrated. The calibration of the MMS is discussed and results on an intercomparison of MMS measurements, Vaisala radiosonde observation and radar tracking data are given. An illustration of the MMS measurement of vertical wind is given

    Model Reduction for Large-Scale Systems with High Dimensional Parametric Input Space

    Get PDF
    A model-constrained adaptive sampling methodology is proposed for reduction of large-scale systems with high-dimensional parametric input spaces. Our model reduction method uses a reduced basis approach, which requires the computation of high-fidelity solutions at a number of sample points throughout the parametric input space. A key challenge that must be addressed in the optimization, control, and probabilistic settings is the need for the reduced models to capture variation over this parametric input space, which, for many applications, will be of high dimension. We pose the task of determining appropriate sample points as a PDE-constrained optimization problem, which is implemented using an efficient adaptive algorithm that scales well to systems with a large number of parameters. The methodology is demonstrated for examples with parametric input spaces of dimension 11 and 21, which describe thermal analysis and design of a heat conduction fin, and compared with statistically-based sampling methods. For this example, the model-constrained adaptive sampling leads to reduced models that, for a given basis size, have error several orders of magnitude smaller than that obtained using the other methods

    Wideband RF photonic vector sum phase-shifter

    Get PDF
    A novel broadband linear phase phase-shifter based on the vector summation method is proposed. A photonic implementation of the phase-shifter with a continuously variable linear phase-shift up to 120° over the frequency range of DC-4 GHz is demonstrated. Good agreement between the measured responses and theoretical predictions is obtained

    Temperature and horizontal wind measurements on the ER-2 aircraft during the 1987 airborne Antarctic ozone experiment

    Get PDF
    The NASA ER-2 aircraft is equipped with special instrumentation to provide accurate in situ measurement of the atmospheric state variables during flight. The Meteorological Measurement System (MMS) on the ER-2 aircraft is described. Since the meteorological parameters (temperature, pressure, and wind vector) are extensively used by other ER-2 experimenters for data processing and interpretation, the accuracy and resolution of each of these parameters are assessed and discussed. During the 1987 Airborne Antarctic Ozone Experiment (AAOE) mission, the ER-2 aircraft was stationed at Punta Arenas, Chile (53 S, 72 W), and successfully flew over Antarctica on 12 occasions between August 17 and September 22, 1987. On each of the 12 flights, the ER-2 aircraft flight plan was to take off at approximately the same local time, fly southward at a near constant potential temperature surface, descend and ascend at the southernmost terminus at about 72 S over Antarctica and return northward at either the same or a different constant potential temperature surface. The measurements of the MMS experiment during the AAOE mission are presented. MMS data are organized to provide a composite view of the polar atmosphere, which is characterized by frigid temperatures and high zonal winds. Altitudinal variations of the temperature measurement (during takeoff/landing at Punta Arenas and during descent/ascent at the southern terminus) and latitudinal variations of the zonal wind (on near constant potential temperature surfaces) are emphasized and discussed

    Applications of the ER-2 meteorological measurement system

    Get PDF
    The NASA ER-2 aircraft is used as a platform for high altitude atmospheric missions. The Meteorological Measurement System (MMS) was developed specifically for atmospheric research to provide accurate high resolution measurements of pressure, temperature, and the 3-D wind vector with a sampling rate of 5/s. The MMS consist of three subsystems: (1) an air motion sensing system to measure the velocity of the air with respect to the aircraft; (2) a high resolution inertial navigation system (INS) to measure the velocity of the aircraft with respect to the earth; and (3) a data acquisition system to sample, process, and record the measurement quantities. MMS data have been used extensively by ER-2 investigators in elucidating the polar ozone chemistry. Herein, applications on atmospheric dynamics are emphasized. Large scale (polar vortex, potential vorticity, model atmosphere), mesoscale (gravity waves, mountain waves) and microscale (heat fluxes) atmospheric phenomena are investigated and discussed

    Resistance to cytotoxicity and sustained release of interleukin-6 and interleukin-8 in the presence of decreased interferon-γ after differentiation of glioblastoma by human natural killer cells.

    Get PDF
    Natural killer (NK) cells are functionally suppressed in the glioblastoma multiforme (GBM) tumor microenvironment. We have recently shown that survival and differentiation of cancer stem-like cells (CSCs)/poorly differentiated tumors are controlled through two distinct phenotypes of cytotoxic and non-cytotoxic/split anergized NK cells, respectively. In this paper, we studied the function of NK cells against brain CSCs/poorly differentiated GBM and their NK cell-differentiated counterparts. Brain CSCs/poorly differentiated GBM, differentiated by split anergized NK supernatants (supernatants from NK cells treated with IL-2 + anti-CD16mAb) expressed higher levels of CD54, B7H1 and MHC-I and were killed less by the NK cells, whereas their CSCs/poorly differentiated counterparts were highly susceptible to NK cell lysis. Resistance to NK cells and differentiation of brain CSCs/poorly differentiated GBM by split anergized NK cells were mediated by interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Brain CSCs/poorly differentiated GBM expressed low levels of TNFRs and IFN-γRs, and when differentiated and cultured with IL-2-treated NK cells, they induced increased secretion of pro-inflammatory cytokine interleukin (IL)-6 and chemokine IL-8 in the presence of decreased IFN-γ secretion. NK-induced differentiation of brain CSCs/poorly differentiated GBM cells was independent of the function of IL-6 and/or IL-8. The inability of NK cells to lyse GBM tumors and the presence of a sustained release of pro-inflammatory cytokines IL-6 and chemokine IL-8 in the presence of a decreased IFN-γ secretion may lead to the inadequacy of NK cells to differentiate GBM CSCs/poorly differentiated tumors, thus failing to control tumor growth
    corecore