243 research outputs found

    Le congé de maternité des enseignantes-chercheures depuis la circulaire du 30 avril 2012

    Get PDF
    Si la circulaire du 30 avril 2012 garantit une décharge de service effective à toutes les enseignantes-chercheures enceintes, quelle que soit leur date d’accouchement, et clarifie la question du maintien des primes durant le congé de maternité, elle laisse de nombreuses questions en suspens, au premier rang desquelles celles des modalités de remplacement des universitaires et de l’impact d’un congé de maternité sur les activités de recherche, donc sur la carrière.While the circular of April 30, 2012 guarantees an effective discharge for all pregnant female researchers, regardless of the date of delivery, and clarifies the issue of maintaining premiums during maternity leave, she leaves many questions Including the replacement of researchers and the impact of maternity leave on research, and hence on career

    GaN/Ga2O3 Core/Shell Nanowires Growth: Towards High Response Gas Sensors

    Get PDF
    International audienceThe development of sensors working in a large range of temperature is of crucial importance in areas such as monitoring of industrial processes or personal tracking using smart objects. Devices integrating GaN/Ga2O3 core/shell nanowires (NWs) are a promising solution for monitoring carbon monoxide (CO). Because the performances of sensors primarily depend on the material properties composing the active layer of the device, it is essential to control them and achieve material synthesis in the first time. In this work, we investigate the synthesis of GaN/Ga2O3 core-shell NWs with a special focus on the formation of the shell. The GaN NWs grown by plasma-assisted molecular beam epitaxy, are post-treated following thermal oxidation to form a Ga2O3-shell surrounding the GaN-core. We establish that the shell thickness can be modulated from 1 to 14 nm by changing the oxidation conditions and follows classical oxidation process: A first rapid oxide-shell growth, followed by a reduced but continuous oxide growth. We also discuss the impact of the atmosphere on the oxidation growth rate. By combining XRD-STEM and EDX analyses, we demonstrate that the oxide-shell is crystalline, presents the β-Ga2O3 phase, and is synthesized in an epitaxial relationship with the GaN-core

    Long-term population studies uncover the genome structure and genetic basis of xenobiotic and host plant adaptation in the herbivore Tetranychus urticae

    Get PDF
    Pesticide resistance arises rapidly in arthropod herbivores, as can host plant adaptation, and both are significant problems in agriculture. These traits have been challenging to study as both are often polygenic and many arthropods are genetically intractable. Here, we examined the genetic architecture of pesticide resistance and host plant adaptation in the two-spotted spider mite, Tetranychus urticae, a global agricultural pest. We show that the short generation time and high fecundity of T. urticae can be readily exploited in experimental evolution designs for high-resolution mapping of quantitative traits. As revealed by selection with spirodiclofen, an acetyl-CoA carboxylase inhibitor, in populations from a cross between a spirodiclofen-resistant and a spirodiclofen-susceptible strain, and which also differed in performance on tomato, we found that a limited number of loci could explain quantitative resistance to this compound. These were resolved to narrow genomic intervals, suggesting specific candidate genes, including acetyl-CoA carboxylase itself, clustered and copy variable cytochrome P450 genes, and NADPH cytochrome P450 reductase, which encodes a redox partner for cytochrome P450s. For performance on tomato, candidate genomic regions for response to selection were distinct from those responding to the synthetic compound and were consistent with a more polygenic architecture. In accomplishing this work, we exploited the continuous nature of allele frequency changes across experimental populations to resolve the existing fragmented T. urticae draft genome to pseudochromosomes. This improved assembly was indispensable for our analyses, as it will be for future research with this model herbivore that is exceptionally amenable to genetic studies

    Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rhodoferax ferrireducens </it>is a metabolically versatile, Fe(III)-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our limited knowledge about <it>R. ferrireducens</it>, the complete genome sequence of this organism was further annotated and then the physiology of <it>R. ferrireducens </it>was investigated with a constraint-based, genome-scale <it>in silico </it>metabolic model and laboratory studies.</p> <p>Results</p> <p>The iterative modeling and experimental approach unveiled exciting, previously unknown physiological features, including an expanded range of substrates that support growth, such as cellobiose and citrate, and provided additional insights into important features such as the stoichiometry of the electron transport chain and the ability to grow via fumarate dismutation. Further analysis explained why <it>R. ferrireducens </it>is unable to grow via photosynthesis or fermentation of sugars like other members of this genus and uncovered novel genes for benzoate metabolism. The genome also revealed that <it>R. ferrireducens </it>is well-adapted for growth in the subsurface because it appears to be capable of dealing with a number of environmental insults, including heavy metals, aromatic compounds, nutrient limitation and oxidative stress.</p> <p>Conclusion</p> <p>This study demonstrates that combining genome-scale modeling with the annotation of a new genome sequence can guide experimental studies and accelerate the understanding of the physiology of under-studied yet environmentally relevant microorganisms.</p

    Prognostic factors in patients admitted to an urban teaching hospital with COVID-19 infection

    Get PDF
    Background: Severe COVID-19 infection results in a systemic inflammatory response (SIRS). This SIRS response shares similarities to the changes observed during the peri-operative period that are recognised to be associated with the development of multiple organ failure. Methods: Electronic patient records for patients who were admitted to an urban teaching hospital during the initial 7-week period of the COVID-19 pandemic in Glasgow, U.K. (17th March 2020—1st May 2020) were examined for routine clinical, laboratory and clinical outcome data. Age, sex, BMI and documented evidence of COVID-19 infection at time of discharge or death certification were considered minimal criteria for inclusion. Results: Of the 224 patients who fulfilled the criteria for inclusion, 52 (23%) had died at 30-days following admission. COVID-19 related respiratory failure (75%) and multiorgan failure (12%) were the commonest causes of death recorded. Age ≥ 70 years (p &lt; 0.001), past medical history of cognitive impairment (p ≤ 0.001), previous delirium (p &lt; 0.001), clinical frailty score &gt; 3 (p &lt; 0.001), hypertension (p &lt; 0.05), heart failure (p &lt; 0.01), national early warning score (NEWS) &gt; 4 (p &lt; 0.01), positive CXR (p &lt; 0.01), and subsequent positive COVID-19 swab (p ≤ 0.001) were associated with 30-day mortality. CRP &gt; 80 mg/L (p &lt; 0.05), albumin &lt; 35 g/L (p &lt; 0.05), peri-operative Glasgow Prognostic Score (poGPS) (p &lt; 0.05), lymphocytes &lt; 1.5 109/l (p &lt; 0.05), neutrophil lymphocyte ratio (p ≤ 0.001), haematocrit (&lt; 0.40 L/L (male)/ &lt; 0.37 L/L (female)) (p ≤ 0.01), urea &gt; 7.5 mmol/L (p &lt; 0.001), creatinine &gt; 130 mmol/L (p &lt; 0.05) and elevated urea: albumin ratio (&lt; 0.001) were also associated with 30-day mortality. On multivariate analysis, age ≥ 70 years (O.R. 3.9, 95% C.I. 1.4–8.2, p &lt; 0.001), past medical history of heart failure (O.R. 3.3, 95% C.I. 1.2–19.3, p &lt; 0.05), NEWS &gt; 4 (O.R. 2.4, 95% C.I. 1.1–4.4, p &lt; 0.05), positive initial CXR (O.R. 0.4, 95% C.I. 0.2–0.9, p &lt; 0.05) and poGPS (O.R. 2.3, 95% C.I. 1.1–4.4, p &lt; 0.05) remained independently associated with 30-day mortality. Among those patients who tested PCR COVID-19 positive (n = 122), age ≥ 70 years (O.R. 4.7, 95% C.I. 2.0—11.3, p &lt; 0.001), past medical history of heart failure (O.R. 4.4, 95% C.I. 1.2–20.5, p &lt; 0.05) and poGPS (O.R. 2.4, 95% C.I. 1.1–5.1, p &lt; 0.05) remained independently associated with 30-days mortality. Conclusion: Age ≥ 70 years and severe systemic inflammation as measured by the peri-operative Glasgow Prognostic Score are independently associated with 30-day mortality among patients admitted to hospital with COVID-19 infection

    Phospholipase C-ε Regulates Epidermal Morphogenesis in Caenorhabditis elegans

    Get PDF
    Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP3)-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells) during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP3 production is stimulated is unknown. IP3 is produced by the action of phospholipase C (PLC). We therefore surveyed the PLC family of C. elegans using RNAi and mutant strains, and found that depletion of PLC-1/PLC-ε produced substantial embryonic lethality. We used the epithelial cell marker ajm-1::gfp to follow the behaviour of epidermal cells and found that 96% of the arrested embryos have morphogenetic defects. These defects include defective ventral enclosure and aberrant dorsal intercalation. Using time-lapse confocal microscopy we show that the migration of the ventral epidermal cells, especially of the leading cells, is slower and often fails in plc-1(tm753) embryos. As a consequence plc-1 loss of function results in ruptured embryos with a Gex phenotype (gut on exterior) and lumpy larvae. Thus PLC-1 is involved in the regulation of morphogenesis. Genetic studies using gain- and loss-of-function alleles of itr-1, the gene encoding the IP3 receptor in C. elegans, demonstrate that PLC-1 acts through ITR-1. Using RNAi and double mutants to deplete the other PLCs in a plc-1 background, we show that PLC-3/PLC-γ and EGL-8/PLC-β can compensate for reduced PLC-1 activity. Our work places PLC-ε into a pathway controlling epidermal cell migration, thus establishing a novel role for PLC-ε

    Constraint-based modeling analysis of the metabolism of two Pelobacter species

    Get PDF
    BACKGROUND: Pelobacter species are commonly found in a number of subsurface environments, and are unique members of the Geobacteraceae family. They are phylogenetically intertwined with both Geobacter and Desulfuromonas species. Pelobacter species likely play important roles in the fermentative degradation of unusual organic matters and syntrophic metabolism in the natural environments, and are of interest for applications in bioremediation and microbial fuel cells. RESULTS: In order to better understand the physiology of Pelobacter species, genome-scale metabolic models for Pelobacter carbinolicus and Pelobacter propionicus were developed. Model development was greatly aided by the availability of models of the closely related Geobacter sulfurreducens and G. metallireducens. The reconstructed P. carbinolicus model contains 741 genes and 708 reactions, whereas the reconstructed P. propionicus model contains 661 genes and 650 reactions. A total of 470 reactions are shared among the two Pelobacter models and the two Geobacter models. The different reactions between the Pelobacter and Geobacter models reflect some unique metabolic capabilities such as fermentative growth for both Pelobacter species. The reconstructed Pelobacter models were validated by simulating published growth conditions including fermentations, hydrogen production in syntrophic co-culture conditions, hydrogen utilization, and Fe(III) reduction. Simulation results matched well with experimental data and indicated the accuracy of the models. CONCLUSIONS: We have developed genome-scale metabolic models of P. carbinolicus and P. propionicus. These models of Pelobacter metabolism can now be incorporated into the growing repertoire of genome scale models of the Geobacteraceae family to aid in describing the growth and activity of these organisms in anoxic environments and in the study of their roles and interactions in the subsurface microbial community
    corecore