2,332 research outputs found

    On the Effectiveness of BGP Hijackers That Evade Public Route Collectors

    Get PDF
    Routing hijack attacks have plagued the Internet for decades. After many failed mitigation attempts, recent Internet-wide BGP monitoring infrastructures relying on distributed route collection systems, called route collectors, give us hope that future monitor systems can quickly detect and ultimately mitigate hijacks. In this paper, we investigate the effectiveness of public route collectors with respect to future attackers deliberately engineering longer hijacks to avoid being recorded by route collectors. Our extensive simulations (and attacks we device) show that monitor-based systems may be unable to observe many carefully crafted hijacks diverting traffic from thousands of ASes. Hijackers could predict whether their attacks would propagate to some BGP feeders (i.e., monitors) of public route collectors. Then, manipulate BGP route propagation so that the attack never reaches those monitors. This observation remains true when considering plausible future Internet topologies, with more IXP links and up to 4 times more monitors peering with route collectors. We then evaluate the feasibility of performing hijacks not observed by route collectors in the real-world. We experiment with two classifiers to predict the monitors that are dangerous to report the attack to route collectors, one based on monitor proximities (i.e., shortest path lengths) and another based on Gao-Rexford routing policies. We show that a proximity-based classifier could be sufficient for the hijacker to identify all dangerous monitors for hijacks announced to peer-to-peer neighbors. For hijacks announced to transit networks, a Gao-Rexford classifier reduces wrong inferences by 91%\ge 91\% without introducing new misclassifications for existing dangerous monitors

    Effect of Non-Magnetic Impurities (Zn,Li) in a Hole Doped Spin-Fermion Model for Cuprates

    Full text link
    The effect of adding non-magnetic impurities (NMI), such as Zn or Li, to high-Tc cuprates is studied applying Monte Carlo techniques to a spin-fermion model. It is observed that adding Li is qualitatively similar to doping with equal percentages of Sr and Zn. The mobile holes (MH) are trapped by the NMI and the system remains insulating and commensurate with antiferromagnetic (AF) correlations. This behavior persists in the region %NMI > %MH. On the other hand, when %NMI < %MH magnetic and charge incommensurabilities are observed. The vertical or horizontal hole-rich stripes, present when % NMI=0 upon hole doping, are pinned by the NMI and tend to become diagonal, surrounding finite AF domains. The %MH-%NMI plane is investigated. Good agreement with experimental results is found in the small portion of this diagram where experimental data are available. Predictions about the expected behavior in the remaining regions are made.Comment: Four pages with four figures embedded in tex

    Commensurate dynamic magnetic correlations in La2(Cu,Li)O4

    Full text link
    When sufficient numbers of holes are introduced into the two-dimensional CuO2 square lattice, dynamic magnetic correlations become incommensurate with underlying lattice in all previously investigated La_{2-x}A_xCu_{1-z}B_zO_{4+y} (A=Sr or Nd, B=Zn) including high T_C superconductors and insulators, and in bilayered superconducting YBa_2Cu_3O_{6.6} and Bi_2Sr_2CaCu_2O_8. Magnetic correlations also become incommensurate in structurally related La_2NiO_4 when doped with Sr or O. We report an exception to this so-far well established experimental "rule" in La_2Cu_{1-z}Li_{z}O_4 in which magnetic correlations remain commensurate.Comment: 4 pages, 3 figures, revised version as for publicatio

    The HATNet and HATSouth Exoplanet Surveys

    Full text link
    The Hungarian-made Automated Telescope Network (HATNet) has been in operation since 2003, with the key science goal being the discovery and accurate characterization of transiting extrasolar planets (TEPs) around bright stars. Using six small, 11\,cm\ aperture, fully automated telescopes in Arizona and Hawaii, as of 2017 March, it has discovered and accurately characterized 67 such objects. The HATSouth network of telescopes has been in operation since 2009, using slightly larger, 18\,cm diameter optical tubes. It was the first global network of telescopes using identical instrumentation. With three premier sites spread out in longitude (Chile, Namibia, Australia), the HATSouth network permits round-the-clock observations of a 128 square arcdegree swath of the sky at any given time, weather permitting. As of this writing, HATSouth has discovered 36 transiting exoplanets. Many of the altogether ~100 HAT and HATSouth exoplanets were the first of their kind. They have been important contributors to the rapidly developing field of exoplanets, motivating and influencing observational techniques, theoretical studies, and also actively shaping future instrumentation for the detection and characterization of such objects.Comment: Invited review chapter, accepted for publication in "Handbook of Exoplanets", edited by H.J. Deeg and J.A. Belmonte, Springer Reference Work

    Magnetic Domains and Stripes in the Spin-Fermion Model for Cuprates

    Full text link
    Monte Carlo simulations applied to the Spin-Fermion model for cuprates show the existence of antiferromagnetic spin domains and charge stripes upon doping. The stripes are partially filled, with a filling of approximately 1/2 hole per site, and they separate spin domains with a π\pi phase shift among them. The stripes observed run either along the x or y axes and they are separated by a large energy barrier. No special boundary conditions or external fields are needed to stabilize these structures at low temperatures. When magnetic incommensurate peaks are observed at momentum π(1,1δ)\pi(1,1-\delta) and symmetrical points, charge incommensurate peaks appear at (0,2δ)(0,2 \delta) and symmetrical points, as experimentally observed. The strong charge fluctuations responsible for the formation of the stripes also induce a pseudogap in the density of states.Comment: Four pages with four figures embedded in tex

    Thermodynamics and structure of self-assembled networks

    Full text link
    We study a generic model of self-assembling chains which can branch and form networks with branching points (junctions) of arbitrary functionality. The physical realizations include physical gels, wormlike micells, dipolar fluids and microemulsions. The model maps the partition function of a solution of branched, self-assembling, mutually avoiding clusters onto that of a Heisenberg magnet in the mathematical limit of zero spin components. The model is solved in the mean field approximation. It is found that despite the absence of any specific interaction between the chains, the entropy of the junctions induces an effective attraction between the monomers, which in the case of three-fold junctions leads to a first order reentrant phase separation between a dilute phase consisting mainly of single chains, and a dense network, or two network phases. Independent of the phase separation, we predict the percolation (connectivity) transition at which an infinite network is formed that partially overlaps with the first-order transition. The percolation transition is a continuous, non thermodynamic transition that describes a change in the topology of the system. Our treatment which predicts both the thermodynamic phase equilibria as well as the spatial correlations in the system allows us to treat both the phase separation and the percolation threshold within the same framework. The density-density correlation correlation has a usual Ornstein-Zernicke form at low monomer densities. At higher densities, a peak emerges in the structure factor, signifying an onset of medium-range order in the system. Implications of the results for different physical systems are discussed.Comment: Submitted to Phys. Rev.

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks

    A link between the spin fluctuation and Fermi surface in high T_C cuprates --- A consistent description within the single-band Hubbard model

    Full text link
    A link between the spin fluctuation and the "fermiology" is explored for the single-band Hubbard model within the fluctuation exchange (FLEX) approximation. We show that the experimentally observed peak position of the spin structure in the high T_C cuprates can be understood from the model that reproduces the experimentally observed Fermi surface. In particular, both the variation of the incommensurability of the peak in the spin structure and the evolution of the Fermi surface with hole doping in La_{2-x}Sr_xCuO_4 may be understood with a second nearest neighbor hopping decreasing with hole doping.Comment: 5 pages, RevTeX, uses epsf.sty and multicol.st

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph
    corecore