2,120 research outputs found

    Mars Dust: Characterization of Particle Size and Electrostatic Charge Distribution

    Get PDF
    Some of the latest pictures of Mars surface sent by NASA's Spirit rover in early January, 2004, show very cohesive, "mud-like" dust layers. Significant amounts of dust clouds are present in the atmosphere of Mars [1-4]. NASA spacecraft missions to Mars confirmed hypotheses from telescopic work that changes observed in the planet's surface markings are caused by wind-driven redistribution of dust. In these dust storms, particles with a wide range of diameters (less than 1 micrometer to 50 micrometers) are a serious problem to solar cells, spacecraft, and spacesuits. Dust storms may cover the entire planet for an extended period of time [5]. It is highly probable that the particles are charged electrostatically by triboelectrification and by UV irradiation

    On the Effectiveness of BGP Hijackers That Evade Public Route Collectors

    Get PDF
    Routing hijack attacks have plagued the Internet for decades. After many failed mitigation attempts, recent Internet-wide BGP monitoring infrastructures relying on distributed route collection systems, called route collectors, give us hope that future monitor systems can quickly detect and ultimately mitigate hijacks. In this paper, we investigate the effectiveness of public route collectors with respect to future attackers deliberately engineering longer hijacks to avoid being recorded by route collectors. Our extensive simulations (and attacks we device) show that monitor-based systems may be unable to observe many carefully crafted hijacks diverting traffic from thousands of ASes. Hijackers could predict whether their attacks would propagate to some BGP feeders (i.e., monitors) of public route collectors. Then, manipulate BGP route propagation so that the attack never reaches those monitors. This observation remains true when considering plausible future Internet topologies, with more IXP links and up to 4 times more monitors peering with route collectors. We then evaluate the feasibility of performing hijacks not observed by route collectors in the real-world. We experiment with two classifiers to predict the monitors that are dangerous to report the attack to route collectors, one based on monitor proximities (i.e., shortest path lengths) and another based on Gao-Rexford routing policies. We show that a proximity-based classifier could be sufficient for the hijacker to identify all dangerous monitors for hijacks announced to peer-to-peer neighbors. For hijacks announced to transit networks, a Gao-Rexford classifier reduces wrong inferences by 91%\ge 91\% without introducing new misclassifications for existing dangerous monitors

    Effect of Non-Magnetic Impurities (Zn,Li) in a Hole Doped Spin-Fermion Model for Cuprates

    Full text link
    The effect of adding non-magnetic impurities (NMI), such as Zn or Li, to high-Tc cuprates is studied applying Monte Carlo techniques to a spin-fermion model. It is observed that adding Li is qualitatively similar to doping with equal percentages of Sr and Zn. The mobile holes (MH) are trapped by the NMI and the system remains insulating and commensurate with antiferromagnetic (AF) correlations. This behavior persists in the region %NMI > %MH. On the other hand, when %NMI < %MH magnetic and charge incommensurabilities are observed. The vertical or horizontal hole-rich stripes, present when % NMI=0 upon hole doping, are pinned by the NMI and tend to become diagonal, surrounding finite AF domains. The %MH-%NMI plane is investigated. Good agreement with experimental results is found in the small portion of this diagram where experimental data are available. Predictions about the expected behavior in the remaining regions are made.Comment: Four pages with four figures embedded in tex

    A Semantic Grid Oriented to E-Tourism

    Full text link
    With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.Comment: 12 PAGES, 7 Figure

    Electrodynamic Dust Shield for Solar Panels on Mars

    Get PDF
    The Materials Adherence Experiment on the Mars Pathfinder mission measured an obscuration of the solar arrays due to dust deposition at a rate of about 0.2 8% per day. It was estimated that settling dust may cause degradation in performance of a solar panel of between 22% and 89% over the course of two years [1, 2]. These results were obtained without the presence of a global dust storm. Several types of adherence forces keep dust particles attached to surfaces. The most widely discussed adherence force is the electrostatic force. Laboratory experiments [3] as well as indirect evidence from the Wheel Abrasion Experiment on Pathfinder [4] indicate that it is very likely that the particles suspended in the Martian atmosphere are electrostatically charged

    Electrodynamic Dust Shield for Surface Exploration Activities on the Moon and Mars

    Get PDF
    The Apollo missions to the moon showed that lunar dust can hamper astronaut surface activities due to its ability to cling to most surfaces. NASA's Mars exploration landers and rovers have also shown that the problem is equally hard if not harder on Mars. In this paper, we report on our efforts to develop and electrodynamic dust shield to prevent the accumulation of dust on surfaces and to remove dust already adhering to those surfaces. The parent technology for the electrodynamic dust shield, developed in the 1970s, has been shown to lift and transport charged and uncharged particles using electrostatic and dielectrophoretic forces. This technology has never been applied for space applications on Mars or the moon due to electrostatic breakdown concerns. In this paper, we show that an appropriate design can prevent the electrostatic breakdown at the low Martian atmospheric pressures. We are also able to show that uncharged dust can be lifted and removed from surfaces under simulated Martian environmental conditions. This technology has many potential benefits for removing dust from visors, viewports and many other surfaces as well as from solar arrays. We have also been able to develop a version of the electrodynamic dust shield working under. hard vacuum conditions. This version should work well on the moon
    corecore