61 research outputs found

    Evaluation of intracranial stenting in a simulated training and assessment environment for neuroendovascular procedures

    Get PDF
    PurposeGiven the inherent complexity of neurointerventional procedures and the associated risks of ionizing radiation exposure, it is crucial to prioritize ongoing training and improve safety protocols. The aim of this study is to assess a training and evaluation in-vitro environment using a vascular model of M1 stenosis, within a clinical angiography suite, without relying on animal models or X-ray radiation.Materials and methodsUsing a transparent model replicating M1 stenosis, we conducted intracranial stenting procedures with four different setups (Gateway & Wingspan, Gateway & Enterprise, Neurospeed & Acclino, and Pharos Vitesse). A video camera was integrated with the angiography system’s monitor for real-time visualization, while a foot switch was employed to simulate live fluoroscopy. Three neuroradiologists with varying levels of expertise performed each procedure for three times. The total duration of fluoroscopy as well as the time from passing the stenosis with the wire to completion of the procedure were recorded using a dedicated software designed for this experimental setup.ResultsCompared to the Gateway & Wingspan procedure, the total fluoroscopy time reduced significantly with the Gateway & Enterprise, Neurospeed & Acclino, and Pharos Vitesse procedures by 51.56 s, 111.33 s, and 144.89 s, respectively (p < 0.001). Additionally, physicians with under 2 years and over 5 years of experience reduced FT by 62.83 s and 106.42 s, respectively, (p < 0.001), compared to a novice physician. Similar trends were noted for the time of wire distal to stenosis, with significant reductions for Neurospeed & Acclino and Pharos Vitesse compared to both Gateway & Wingspan as well as Gateway & Enterprise (all p < 0.001).ConclusionProcedures requiring wire exchange maneuvers exhibited nearly twice the fluoroscopy time in comparison to balloon-mounted stenting or stent-placement via PTA balloon catheters. The more experienced neuroradiologist demonstrated significantly quicker performance in line with expectations in a real-life clinical setting, when compared to the less experienced interventionalist. This in-vitro setup allowed the evaluation of alternative technical approaches and differences in experience of operators without the use of animal models or X-ray. The setup combines advantages of simulators and silicone vessel models in a realistic working environment

    Angiographic CT with intravenous administration of contrast medium is a noninvasive option for follow-up after intracranial stenting

    Get PDF
    Intracranial angioplasty and stenting (ICAS) is a therapeutic option in symptomatic intracranial atherosclerotic disease. Adequate follow-up examination is necessary to exclude in-stent restenosis. Conventional intraarterial digital subtraction angiography (ia-DSA) is the current gold standard, but it is an invasive technique and carries the risk of neurological complications. Angiographic CT (ACT) is a new technique that provides a volume dataset of the highest spatial resolution and high contrast resolution derived from a rotational acquisition of a c-arm-mounted flat-panel detector. The feasibility of ACT with intravenous administration of contrast medium (iv-ACT) for follow-up after ICAS is demonstrated. In two patients iv-ACT was performed as a follow-up examination 12 months after ICAS. High-resolution volume data from the rotational acquisitions were processed to provide delineation of the stent lumen as well as imaging of the brain parenchyma and vessels. In both patients the patency of the stent lumen was assessed successfully. In addition, all other brain vessels were displayed in a manner similar to their appearance on CT angiograms. The brain parenchyma was also adequately imaged in a manner similar to its appearance on CT images. We demonstrated the feasibility and diagnostic value of iv-ACT for follow-up imaging after ICAS. This new application has the potential to become the imaging method of choice after ICAS since it not only enables visualization of the patency of the stent lumen but also is minimally invasive and provides additional information about all brain arteries and the brain parenchyma

    Trajektorienorientierte Modellierung für Milchvieh-Ackerbaubetriebe zur Einhaltung der Stoffstrombilanzverordnung

    No full text
    Die Stoffstrombilanzverordnung verpflichtet landwirtschaftliche Betriebe zur Bilanzierung aller stickstoff- und phosphorhaltigen Betriebsmittel und Erzeugnisse. Zusätzlich zu geeigneten Dokumentationssystemen werden Entscheidungshilfen ("Navis") erforderlich, die die Produktion und die innerbetrieblichen Stoffströme allokationsoptimal steuern und bereits bei der Planung die gesetzlich vorgeschriebenen Stoffstromsalden simultan berücksichtigen. Wir erläutern den Aufbau eines trajektorienorientierten, die praktischen Entscheidungsentitäten möglichst realistisch abbildenden "action rooms" mit der Vorüberlegung, dass simultane mehrperiodige Modelle der gemischt-ganzzahligen Linearen Programmierung für diese Planungsaufgabe besonders geeignet sind

    Intra-aneurysmal flow disruption after implantation of the Medina® Embolization Device depends on aneurysm neck coverage.

    No full text
    Flow disruption achieved by braided intrasaccular implants is a novel treatment strategy for cerebrovascular aneurysms. We hypothesized that the degree of intra-aneurysmal flow disruption can be quantified in vitro and is influenced by device position across the aneurysm neck. We tested this hypothesis using the Medina® Embolization Device (MED).Ten different patient-specific elastic vascular models were manufactured. Models were connected to a pulsatile flow circuit, filled with a blood-mimicking fluid and treated by two operators using a single MED. Intra-aneurysmal flow velocity was measured using conventional and high-frequency digital subtraction angiography (HF-DSA) before and after each deployment. Aneurysm neck coverage by the implanted devices was assessed with flat detector computed tomography on a three-point Likert scale.A total of 80 individual MED deployments were performed by the two operators. The mean intra-aneurysmal flow velocity reduction after MED implantation was 33.6% (27.5-39.7%). No significant differences in neck coverage (p = 0.99) or flow disruption (p = 0.84) were observed between operators. The degree of flow disruption significantly correlated with neck coverage (ρ = 0.42, 95% CI: 0.21-0.59, p = 0.002) as well as with neck area (ρ = -0,35, 95% CI: -0.54 --0.13, p = 0.024). On multiple regression analysis, both neck coverage and total neck area were independent predictors of flow disruption.The degree of intra-aneurysmal flow disruption after MED implantation can be quantified in vitro and varies considerably between different aneurysms and different device configurations. Optimal device coverage across the aneurysm neck improves flow disruption and may thus contribute to aneurysm occlusion

    Depiction of intracranial hemorrhage on FPCT and MDCT.

    No full text
    <p>Figure shows axial reconstructions from FPCT and MDCT in a patient with intracerebral and intraventricular hemorrhage. In the upper row, regions of interest were drawn on the MDCT image and superimposed onto the co-registered FPCT image. The same images without superimposed regions of interest are shown in the bottom row.</p

    Patient characteristics and imaging of hemorrhagic lesions in FPCT compared to MDCT.

    No full text
    <p>Patient characteristics and imaging of hemorrhagic lesions in FPCT compared to MDCT.</p
    corecore