3 research outputs found

    3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing

    Get PDF
    This work aims to use carboxymethyl cellulose (CMC) as main structural and functional component of 3D printed scaffolds for healing of diabetic wounds. Differently from previous inks involving small contents in CMC, herein sterile (steam-heated) concentrated CMC solely dispersions (10–20%w/v) were screened regarding printability and fidelity properties. CMC (15%w/v)-citric acid inks showed excellent self-healing rheological properties and stability during storage. CMC scaffolds loaded with platelet rich plasma (PRP) sustained the release of relevant growth factors. CMC scaffolds both with and without PRP promoted angiogenesis in ovo, stem cell migration in vitro, and wound healing in a diabetic model in vivo. Transparent CMC scaffolds allowed direct monitoring of bilateral full-thickness wounds created in rat dorsum. CMC scaffolds facilitated re-epithelialization, granulation, and angiogenesis in full-thickness skin defects, and the performance was improved when combined with PRP. Overall, CMC is pointed out as outstanding component of active dressings for diabetic woundsS

    Sustained blood glutamate scavenging enhances protection in ischemic stroke

    Get PDF
    Stroke is a major cause of morbidity, mortality, and disability. During ischemic stroke, a marked and prolonged rise of glutamate concentration in the brain causes neuronal cell death. This study explores the protective effect of a bioconjugate form of glutamate oxaloacetate transaminase (hrGOT), which catalyzes the depletion of blood glutamate in the bloodstream for ~6 days following a single administration. When treated with this bioconjugate, a significant reduction of the infarct volume and a better retention of sensorimotor function was observed for ischemic rats compared to those treated with saline. Moreover, the equivalent dose of native hrGOT yielded similar results to the saline treated group for some tests. Targeting the bioconjugate to the blood-brain-barrier did not improve its performance. The data suggest that the bioconjugates draw glutamate out of the brain by displacing homeostasis between the different glutamate pools of the body

    Adult Stem Cells and Induced Pluripotent Stem Cells for Stroke Treatment

    No full text
    Stroke is the main cause of disability and death in the world within neurological diseases. Despite such a huge impact, enzymatic, and mechanical recanalization are the only treatments available so far for ischemic stroke, but only <20% of patients can benefit from them. The use of stem cells as a possible cell therapy in stroke has been tested for years. The results obtained from these studies, although conflicting or controversial in some aspects, are promising. In the last few years, the recent development of the induced pluripotent stem cells has opened new possibilities to find new cell therapies against stroke. In this review, we will provide an overview of the state of the art of cell therapy in stroke. We will describe the current situation of the most employed stem cells and the use of induced pluripotent stem cells in stroke pathology. We will also present a summary of the different clinical trials that are being carried out or that already have results on the use of stem cells as a potential therapeutic intervention for stroke
    corecore