84 research outputs found

    Determinants of Agricultural Pesticide Concentrations in Carpet Dust

    Get PDF
    Background: Residential proximity to agricultural pesticide applications has been used as a surrogate for exposure in epidemiologic studies, although little is known about the relationship with levels of pesticides in homes

    Haplotypes of DNA repair and cell cycle control genes, X-ray exposure, and risk of childhood acute lymphoblastic leukemia

    Get PDF
    [[abstract]]Background: Acute leukemias of childhood are a heterogeneous group of malignancies characterized by cytogenetic abnormalities, such as translocations and changes in ploidy. These abnormalities may be influenced by altered DNA repair and cell cycle control processes. Methods: We examined the association between childhood acute lymphoblastic leukemia (ALL) and 32 genes in DNA repair and cell cycle pathways using a haplotype-based approach, among 377 childhood ALL cases and 448 controls enrolled during 1995-2002. Results: We found that haplotypes in APEX1, BRCA2, ERCC2, and RAD51 were significantly associated with total ALL, while haplotypes in NBN and XRCC4, and CDKN2A were associated with structural and numerical change subtypes, respectively. In addition, we observed statistically significant interaction between exposure to 3 or more diagnostic X-rays and haplotypes of XRCC4 on risk of structural abnormality-positive childhood ALL. Conclusions: These results support a role of altered DNA repair and cell cycle processes in the risk of childhood ALL, and show that this genetic susceptibility can differ by cytogenetic subtype and may be modified by exposure to ionizing radiation. To our knowledge, our study is the first to broadly examine the DNA repair and cell cycle pathways using a haplotype approach in conjunction with X-ray exposures in childhood ALL risk. If confirmed, future studies are needed to identify specific functional SNPs in the regions of interest identified in this analysis

    Magdalena Fan, Caribbean

    No full text
    The Magdalena Fan can be divided into: upper fan—1:60–1:110 gradients, channels with well-developed levees, generally several subbottom reflectors on 3.5-kHz records, and fine-grained sediments; middle fan—1:110–1:200 gradients, channels with very subdued levees, several to few sub- bottom reflectors on 3.5-kHz records, and chaotic and discontinuous reflections on multichannel seismic (MCS) records; lower fan—1:250 gradients, small channels and relatively smooth seafloor, generally coarsegrained sediments, few or no subbottom reflectors on 3.5-kHz records, and flat continuous reflections on MCS records. In addition to the turbidity currents, slumping along the continental slope and elsewhere also influenced sedimentation in the fan
    corecore