207 research outputs found
Huge Electro-/photo-/acidoinduced Second-order Nonlinear Contrasts from Multiaddressable Indolinooxazolodine
In this work, linear and nonlinear optical properties of electro-/acido-/photoswitchable indolino[2,1-b]oxazolidine derivatives were investigated. The linear optical properties of the closed and open forms have been characterized by UVâvisible and IR spectroscopies associated with DFT calculations. Nonlinear optical properties of the compounds have been obtained by ex situ and in situ hyper-Rayleigh experiments in solution. We show that protonated, oxidized, and irradiated open forms exhibit the same visible absorption and NLO features. In particular, the closed and open forms exhibit a huge contrast of the first hyperpolarizability with an enhancement factor of 40â45. Additionally, we have designed an original electrochemical cell that allows to monitor in situ the hyper-Rayleigh response upon electrical stimulus. We report notably a partial but good and reversible NLO contrast in situ during oxidation/reduction cycles. Thereby, indolinooxazolidine moieties are versatile trimodal switchable units which are very promising for applications in devices
Photoinduced 3D orientational order in side chain liquid crystalline azopolymers
We apply experimental technique based on the combination of methods dealing
with principal refractive indices and absorption coefficients to study the
photoinduced 3D orientational order in the films of liquid crystalline (LC)
azopolymers. The technique is used to identify 3D orientational configurations
of trans azobenzene chromophores and to characterize the degree of ordering in
terms of order parameters. We study two types of LC azopolymers which form
structures with preferred in-plane and out-of-plane alignment of
azochromophores, correspondingly. Using irradiation with the polarized light of
two different wavelengths we find that the kinetics of photoinduced anisotropy
can be dominated by either photo-reorientation or photoselection mechanisms
depending on the wavelength. We formulate the phenomenological model describing
the kinetics of photoinduced anisotropy in terms of the isomer concentrations
and the order parameter tensor. We present the numerical results for absorption
coefficients that are found to be in good agreement with the experimental data.
The model is also used to interpret the effect of changing the mechanism with
the wavelength of the pumping light.Comment: uses revtex4 28 pages, 10 figure
Enantiomeric resolution of helicochiral paddlewheel complexes and their infrared, Raman, UV-vis and X-ray optical activity
International audienceLinear polynuclear paddlewheel complexes-"extended metal atom chains" or "metal strings"-have provided attractive models for the study of metal-metal bonding, magnetism and conductivity since their discovery in the 1990s [1]. Their helicoidal chirality, arising from mutual steric hindrance of the 3-pyridyl protons, resulting in the twisting of the equatorial ligand around the metal axis (see figure), has been less studied. Nonetheless, in one of the few examples of chiral resolution, the obtained enantiomers of a trinickel complex showed a remarkably high specific rotation of 5000 degâąmLâąg â1 âądm â1 [2], motivating us to seek a general technique for the chiral resolution of such racemates. We have developed a procedure based on anion exchange for the chiral resolution of [M3(dpa)4] 2+ salts (M = Co(II) or Ni(II), Hdpa = 2,2'-dipyridylamine). Homochiral arsenyl tartrate (AsT) salts promoted the selective crystallization of [-M3(dpa)4(MeCN)2](NBu4)2[-AsT]2, or [-M3(dpa)4(MeCN)2](NBu4)2[-AsT]2 in the P4212 space group. The enantiopure compounds demonstrated surprisingly large optical activities using UV-vis, Raman and infrared spectroscopy in solution and, for the cobalt derivatives, in the X-ray range at the Co K-edge in single crystals. An intense X-ray linear dichroism was observed in the orthoaxial crystal orientation, whereas it vanished in the axial confirmation, while the angular dependence of the circular dichroism spectra followed the expected (3cos 2 â 1) function, thus spectroscopically confirming the D4 crystal symmetry. X-ray magnetic circular dichroism and X-ray magnetochiral dichroism signals at the Co K-edge were not detected, likely due to a strongly delocalized spin density on the metal-metal bonded tricobalt core. Nevertheless, these results establish that chiral polynuclear paddlewheel complexes can be cleanly resolved using selective crystallization and demonstrate considerable optical activity in the infrared, UV-vis and X-ray energy ranges, thus potentially offering future perspectives in non-linear optics and asymmetric synthesis [3]
Cryptophane énantiopures: synthÚse et propriétés chiroptiques
International audienceThis review addresses the synthesis of enantiopure cryptophane and the study of their chiroptical properties. Cryptophane derivatives represent an important class of macrocyclic compounds that can bind a large range of species in solution under different conditions. The overwhelming majority of these host molecules is chiral and their chiroptical properties have been thoroughly investigated. The first part of this review is dedicated to the optical resolution and the synthesis of enantiopure cryptophane derivatives. In a second part, the study of the chiroptical properties of these molecular hosts by different techniques such as electronic and vibrational circular dichroism and Raman optical activity is detailed. These techniques allow the determination of the absolute configuration of cryptophane derivatives and provide useful information about their conformation in different conditions
- âŠ