30 research outputs found
A Smo/Gli multitarget hedgehog pathway inhibitor impairs tumor growth
Pharmacological Hedgehog (Hh) pathway inhibition has emerged as a valuable anticancer strategy. A number of small molecules able to block the pathway at the upstream receptor Smoothened (Smo) or the downstream effector glioma-associated oncogene 1 (Gli1) has been designed and developed. In a recent study, we exploited the high versatility of the natural isoflavone scaffold for targeting the Hh signaling pathway at multiple levels showing that the simultaneous targeting of Smo and Gli1 provided synergistic Hh pathway inhibition stronger than single administration. This approach seems to effectively overcome the drug resistance, particularly at the level of Smo. Here, we combined the pharmacophores targeting Smo and Gli1 into a single and individual isoflavone, compound 22, which inhibits the Hh pathway at both upstream and downstream level. We demonstrate that this multitarget agent suppresses medulloblastoma growth in vitro and in vivo through antagonism of Smo and Gli1, which is a novel mechanism of action in Hh inhibition
Maml1 acts cooperatively with Gli proteins to regulate Sonic hedgheog signaling pathway
Sonic hedgehog (Shh) signaling is essential for proliferation of cerebellar granule cell progenitors (GCPs) and its misregulation is linked to various disorders, including cerebellar cancer medulloblastoma. The effects of Shh pathway are mediated by the Gli family of transcription factors, which controls the expression of a number of target genes, including Gli1. Here, we identify Mastermind-like 1 (Maml1) as a novel regulator of the Shh signaling since it interacts with Gli proteins, working as a potent transcriptional coactivator. Notably, Maml1 silencing results in a significant reduction of Gli target genes expression, with a negative impact on cell growth of NIH3T3 and Patched1â/â mouse embryonic fibroblasts (MEFs), bearing a constitutively active Shh signaling. Remarkably, Shh pathway activity results severely compromised both in MEFs and GCPs deriving from Maml1â/â mice with an impairment of GCPs proliferation and cerebellum development. Therefore Maml1â/â phenotype mimics aspects of Shh pathway deficiency, suggesting an intrinsic requirement for Maml1 in cerebellum development. The present study shows a new role for Maml1 as a component of Shh signaling, which plays a crucial role in both development and tumorigenesis
A gene dosageâdependent effect unveils NBS1 as both a haploinsufficient tumour suppressor and an essential gene for SHHâmedulloblastoma
Aims: Inherited or somatic mutations in the MRE11, RAD50 and NBN genes increase the incidence of tumours, including medulloblastoma (MB). On the other hand, MRE11, RAD50 and NBS1 protein components of the MRN complex are often overexpressed and sometimes essential in cancer. In order to solve the apparent conundrum about the oncosuppressive or oncopromoting role of the MRN complex, we explored the functions of NBS1 in an MB-prone animal model.
Materials and methods: We generated and analysed the monoallelic or biallelic deletion of the Nbn gene in the context of the SmoA1 transgenic mouse, a Sonic Hedgehog (SHH)-dependent MB-prone animal model. We used normal and tumour tissues from these animal models, primary granule cell progenitors (GCPs) from genetically modified animals and NBS1-depleted primary MB cells, to uncover the effects of NBS1 depletion by RNA-Seq, by biochemical characterisation of the SHH pathway and the DNA damage response (DDR) as well as on the growth and clonogenic properties of GCPs.
Results: We found that monoallelic Nbn deletion increases SmoA1-dependent MB incidence. In addition to a defective DDR, Nbn+/- GCPs show increased clonogenicity compared to Nbn+/+ GCPs, dependent on an enhanced Notch signalling. In contrast, full NbnKO impairs MB development both in SmoA1 mice and in an SHH-driven tumour allograft.
Conclusions: Our study indicates that Nbn is haploinsufficient for SHH-MB development whereas full NbnKO is epistatic on SHH-driven MB development, thus revealing a gene dosage-dependent effect of Nbn inactivation on SHH-MB development
Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH Medulloblastoma.
SHH Medulloblastoma (SHH-MB) is a pediatric brain tumor characterized by an inappropriate activation of the developmental Hedgehog (Hh) signaling. SHH-MB patients treated with the FDA-approved vismodegib, an Hh inhibitor that targets the transmembrane activator Smoothened (Smo), have shown the rapid development of drug resistance and tumor relapse due to novel Smo mutations. Moreover, a subset of patients did not respond to vismodegib because mutations were localized downstream of Smo. Thus, targeting downstream Hh components is now considered a preferable approach. We show here that selective inhibition of the downstream Hh effectors HDAC1 and HDAC2 robustly counteracts SHH-MB growth in mouse models. These two deacetylases are upregulated in tumor and their knockdown inhibits Hh signaling and decreases tumor growth. We demonstrate that mocetinostat (MGCD0103), a selective HDAC1/HDAC2 inhibitor, is a potent Hh inhibitor and that its effect is linked to Gli1 acetylation at K518. Of note, we demonstrate that administration of mocetinostat to mouse models of SHH-MB drastically reduces tumor growth, by reducing proliferation and increasing apoptosis of tumor cells and prolongs mouse survival rate. Collectively, these data demonstrate the preclinical efficacy of targeting the downstream HDAC1/2-Gli1 acetylation in the treatment of SHH-MB
Itch/ÎČ-arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis
Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/ÎČ-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability. This process increases the association of SuFu with Gli3, promoting the conversion of Gli3 into a repressor, which keeps Hh signalling off. Activation of Hh signalling antagonises the Itch-dependent polyubiquitylation of SuFu. Notably, different SuFu mutations occurring in medulloblastoma patients are insensitive to Itch activity, thus leading to deregulated Hh signalling and enhancing medulloblastoma cell growth. Our findings uncover mechanisms controlling the tumour suppressive functions of SuFu and reveal that their alterations are implicated in medulloblastoma tumorigenesis
Itch/ÎČ-arrestin2-dependent non-proteolytic ubiquitylation of SuFu controls Hedgehog signalling and medulloblastoma tumorigenesis
Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/ÎČ-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability. This process increases the association of SuFu with Gli3, promoting the conversion of Gli3 into a repressor, which keeps Hh signalling off. Activation of Hh signalling antagonises the Itch-dependent polyubiquitylation of SuFu. Notably, different SuFu mutations occurring in medulloblastoma patients are insensitive to Itch activity, thus leading to deregulated Hh signalling and enhancing medulloblastoma cell growth. Our findings uncover mechanisms controlling the tumour suppressive functions of SuFu and reveal that their alterations are implicated in medulloblastoma tumorigenesis
MYC upstream region orchestrates resistance to PI3K inhibitors in cancer cells through FOXO3a-mediated autophagic adaptation
The MYC oncogene is frequently overexpressed in tumors and inhibition of its translation is considered an attractive therapeutic
opportunity. Despite numerous reports proposing an internal ribosome entry site (IRES) within the MYC Upstream Region (MYC UR)
to sustain MYC translation during cellular stress or chemotherapy, conflicting evidence remains regarding the validity of such a
mechanism. Through comprehensive investigations in MYC-driven Colorectal Cancer (CRC) and Burkitt Lymphoma (BL) cells, we
demonstrate that MYC UR does not facilitate cap-independent translation, but instead orchestrates resistance to PI3K inhibitors.
Genomic deletion of MYC UR neither impacts MYC protein levels nor viability in CRC cells, either untreated or exposed to cellular
stress. However, in response to PI3K inhibitors, MYC UR drives a FOXO3a-dependent transcriptional upregulation of MYC, conferring
drug resistance. This resistance is mediated by enhanced autophagic flux, governed by MYC, and blockade of autophagy sensitizes
CRC cells to PI3K inhibition in vitro and in vivo. Remarkably, BL cells lacking the translocation of MYC UR exhibit sensitivity to PI3K
inhibitors, whereas MYC UR-translocated cells respond to these drugs only when autophagy is inhibited. These findings challenge
previous notions regarding IRES-mediated translation and highlight a promising strategy to overcome resistance to PI3K inhibitors
in MYC-driven malignancies, offering potential clinical implications for CRC and BL treatment
SALL4 is a CRL3REN/KCTD11 substrate that drives Sonic Hedgehog-dependent medulloblastoma
The Sonic Hedgehog (SHH) pathway is crucial regulator of embryonic development and stemness. Its alteration leads to medulloblastoma (MB), the most common malignant pediatric brain tumor. The SHH-MB subgroup is the best genetically characterized, however the molecular mechanisms responsible for its pathogenesis are not fully understood and therapeutic benefits are still limited. Here, we show that the pro-oncogenic stemness regulator Spalt-like transcriptional factor 4 (SALL4) is re-expressed in mouse SHH-MB models, and its high levels correlate with worse overall survival in SHH-MB patients. Proteomic analysis revealed that SALL4 interacts with REN/KCTD11 (here REN), a substrate receptor subunit of the Cullin3-RING ubiquitin ligase complex (CRL3REN) and a tumor suppressor lost in ~30% of human SHH-MBs. We demonstrate that CRL3REN induces polyubiquitylation and degradation of wild type SALL4, but not of a SALL4 mutant lacking zinc finger cluster 1 domain (ÎZFC1). Interestingly, SALL4 binds GLI1 and cooperates with HDAC1 to potentiate GLI1 deacetylation and transcriptional activity. Notably, inhibition of SALL4 suppresses SHH-MB growth both in murine and patient-derived xenograft models. Our findings identify SALL4 as a CRL3REN substrate and a promising therapeutic target in SHH-dependent cancers
ERAP1 promotes Hedgehog-dependent tumorigenesis by controlling USP47-mediated degradation of ÎČTrCP.
The Hedgehog (Hh) pathway is essential for embryonic development and tissue homeostasis. Aberrant Hh signaling may occur in a wide range of human cancers, such as medulloblastoma, the most common brain malignancy in childhood. Here, we identify endoplasmic reticulum aminopeptidase 1 (ERAP1), a key regulator of innate and adaptive antitumor immune responses, as a previously unknown player in the Hh signaling pathway. We demonstrate that ERAP1 binds the deubiquitylase enzyme USP47, displaces the USP47-associated ÎČTrCP, the substrate-receptor subunit of the SCFÎČTrCP ubiquitin ligase, and promotes ÎČTrCP degradation. These events result in the modulation of Gli transcription factors, the final effectors of the Hh pathway, and the enhancement of Hh activity. Remarkably, genetic or pharmacological inhibition of ERAP1 suppresses Hh-dependent tumor growth in vitro and in vivo. Our findings unveil an unexpected role for ERAP1 in cancer and indicate ERAP1 as a promising therapeutic target for Hh-driven tumors
Harnessing the activation of RIG-I like receptors to inhibit glioblastoma tumorigenesis
Glioblastoma (GB) is an incurable form of brain malignancy in an adult with a median survival of less than 15 months. The current standard of care, which consists of surgical resection, radiotherapy, and chemotherapy with temozolomide, has been unsuccessful due to an extensive inter- and intra-tumoral genetic and molecular heterogeneity. This aspect represents a serious obstacle for developing alternative therapeutic options for GB. In the last years, immunotherapy has emerged as an effective treatment for a wide range of cancers and several trials have evaluated its effects in GB patients. Unfortunately, clinical outcomes were disappointing particularly because of the presence of tumor immunosuppressive microenvironment. Recently, anti-cancer approaches aimed to improve the expression and the activity of RIG-I-like receptors (RLRs) have emerged. These innovative therapeutic strategies attempt to stimulate both innate and adaptive immune responses against tumor antigens and to promote the apoptosis of cancer cells. Indeed, RLRs are important mediators of the innate immune system by triggering the type I interferon (IFN) response upon recognition of immunostimulatory RNAs. In this mini-review, we discuss the functions of RLRs family members in the control of immune response and we focus on the potential clinical application of RLRs agonists as a promising strategy for GB therapy