3 research outputs found

    Investigation of element-specific and bulk magnetism, electronic and crystal structures of La{0.70}Ca{0.30}Mn{1-x}Cr{x}O{3}

    Get PDF
    The magnetic interactions in La{0.70}Ca{0.30}Mn{1-x}Cr{x}O{3} (x = 0.15, 0.50 and 0.70) are investigated by x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), high-resolution x-ray powder diffraction, and bulk magnetization measurements. XAS in the Mn and Cr L{2,3} edges support stable single valent Cr{3+} ions and a varying Mn valence state with x, while the O K edge XAS spectrum reveals local maxima in the O 2p density of states close to the Fermi level due to mixing with Mn and Cr 3d states. A robust antiferromagnetic state is found for x=0.70 below TN = 258 K. For x=0.15, combined XMCD and bulk magnetization measurements indicate a fully polarized ferrimagnetic state for the Mn and Cr spins below Tc=224 K. For x=0.50, a reduced ferrimagnetic component dominated by Mn spins is present below Tc=154 K. No evidence of lattice anomalies due to cooperative charge and orbital orderings is found by x-ray diffraction for all samples. The magnetic properties of this system are rationalized in terms of a competition of ferromagnetic Mn-Mn double exchange and antiferromagnetic Cr-Cr and Cr-Mn superexchange interactions.Comment: 25 pages, 9 figure

    Training-induced inversion of spontaneous exchange bias field on La1.5Ca0.5CoMnO6

    Full text link
    In this work we report the synthesis and structural, electronic and magnetic properties of La1.5Ca0.5CoMnO6 double-perovskite. This is a re-entrant spin cluster material which exhibits a non-negligible negative exchange bias effect when it is cooled in zero magnetic field from an unmagnetized state down to low temperature. X-ray powder diffraction, X-ray photoelectron spectroscopy and magnetometry results indicate mixed valence state at Co site, leading to competing magnetic phases and uncompensated spins at the magnetic interfaces. We compare the results for this Ca-doped material with those reported for the resemblant compound La1.5Sr0.5CoMnO6, and discuss the much smaller spontaneous exchange bias effect observed for the former in terms of its structural and magnetic particularities. For La1.5Ca0.5CoMnO6, when successive magnetization loops are carried, the spontaneous exchange bias field inverts its sign from negative to positive from the first to the second measurement. We discuss this behavior based on the disorder at the magnetic interfaces, related to the presence of a glassy phase. This compound also exhibits a large conventional exchange bias, for which there is no sign inversion of the exchange bias field for consecutive cycles

    Zero-field-cooled exchange bias effect in phase-segregated La2-xA(x)CoMnO(6-delta) (A = Ba,Ca,Sr; x=0, 0.5)

    No full text
    CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPEG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE GOIÁSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORIn the zero-field-cooled exchange bias (ZEB) effect, the unidirectional magnetic anisotropy is set at low temperatures even when the system is cooled in the absence of an external magnetic field. La1.5Sr0.5CoMnO6 stands out as presenting the largest ZEB reported so far, while for La1.5Ca0.5CoMnO6 the exchange bias field (HEB) is one order of magnitude smaller. Here we show that La1.5Ba0.5CoMnO6 also exhibits a pronounced shift of its magnetic hysteresis loop, with an intermediate H-EB value with respect to Ca- and Sr-doped samples. To figure out the microscopic mechanisms responsible for this phenomenon, these compounds were investigated by means of synchrotron x-ray powder diffraction, Raman spectroscopy, muon spin rotation and relaxation, ac and dc magnetization, x-ray absorption spectroscopy (XAS), and x-ray magnetic circular dichroism (XMCD). The parent compound La2CoMnO6 was also studied for comparison as a reference of a non-ZEB material. Our results show that the Ba-, Ca-, and Sr-doped samples present a small amount of phase segregation, and that the ZEB effect is strongly correlated to the system's structure. We also observed that mixed valence states Co2+/Co3+ and Mn4+/Mn3+ are already present at the La2CoMnO6 parent compound, and that Ba2+/Ca2+/Sr2+ partial substitution at the La3+ site leads to a large increase of Co average valence, with a subtle augmentation of Mn formal valence. Estimates of the Co and Mn valences from the L-edge XAS indicate the presence of oxygen vacancies in all samples (0.05 <= delta <= 0.1). Our XMCD results show a great decrease of Co moment for the doped compounds, and they indicate that the shift of the hysteresis curves for these samples is related to uncompensated antiferromagnetic coupling between Co and Mn.1005113CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPEG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE GOIÁSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPERJ - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIROFAPEG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE GOIÁSFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIOR400134/2016-0Li 244/12Sem informaçãoSem informaçãoSem informaçã
    corecore