412 research outputs found

    Should you Take a Lump-Sum or Annuitize? Results from Swiss Pension Funds

    Get PDF
    We use a unique dataset on individual retirement decisions in Swiss pension funds to analyze the choice between an annuity and a lump sum at retirement. Our analysis suggests the existence of an “acquiescence bias”, meaning that a majority of retirees chooses the standard option offered by the pensions fund or suggested by common practice. Small levels of accumulated pension capital are much more likely to be withdrawn as a lump sum, suggesting a potential moral hazard behavior or a magnitude effect. We hardly find evidence for adverse selection effects in the data. Single men, for example, whose money’s worth of an annuity is considerably below the corresponding value of married men, are not more likely to choose the capital option.occupational pension, lump sum, annuity, choice anomalies

    Identifying Conservation and Restoration Priorities for Saproxylic and Old-Growth Forest Species: A Case Study in Switzerland

    Get PDF
    Saproxylic (dead-wood-associated) and old-growth species are among the most threatened species in European forest ecosystems, as they are susceptible to intensive forest management. Identifying areas with particular relevant features of biodiversity is of prime concern when developing species conservation and habitat restoration strategies and in optimizing resource investments. We present an approach to identify regional conservation and restoration priorities even if knowledge on species distribution is weak, such as for saproxylic and old-growth species in Switzerland. Habitat suitability maps were modeled for an expert-based selection of 55 focal species, using an ecological niche factor analyses (ENFA). All the maps were then overlaid, in order to identify potential species' hotspots for different species groups of the 55 focal species (e.g., birds, fungi, red-listed species). We found that hotspots for various species groups did not correspond. Our results indicate that an approach based on "richness hotspots" may fail to conserve specific species groups. We hence recommend defining a biodiversity conservation strategy prior to implementing conservation/restoration efforts in specific regions. The conservation priority setting of the five biogeographical regions in Switzerland, however, did not differ when different hotspot definitions were applied. This observation emphasizes that the chosen method is robust. Since the ENFA needs only presence data, this species prediction method seems to be useful for any situation where the species distribution is poorly known and/or absence data are lacking. In order to identify priorities for either conservation or restoration efforts, we recommend a method based on presence data only, because absence data may reflect factors unrelated to species presence

    Enhancing touch sensibility with sensory electrical stimulation and sensory retraining

    Get PDF
    A large proportion of stroke survivors suffer from sensory loss, negatively impacting their independence, quality of life, and neurorehabilitation prognosis. Despite the high prevalence of somatosensory impairments, our understanding of somatosensory interventions such as sensory electrical stimulation (SES) in neurorehabilitation is limited. We aimed to study the effectiveness of SES combined with a sensory discrimination task in a well-controlled virtual environment in healthy participants, setting a foundation for its potential application in stroke rehabilitation. We employed electroencephalography (EEG) to gain a better understanding of the underlying neural mechanisms and dynamics associated with sensory training and SES. We conducted a single-session experiment with 26 healthy participants who explored a set of three visually identical virtual textures—haptically rendered by a robotic device and that differed in their spatial period—while physically guided by the robot to identify the odd texture. The experiment consisted of three phases: pre-intervention, intervention, and post-intervention. Half the participants received subthreshold whole-hand SES during the intervention, while the other half received sham stimulation. We evaluated changes in task performance—assessed by the probability of correct responses—before and after intervention and between groups. We also evaluated differences in the exploration behavior, e.g., scanning speed. EEG was employed to examine the effects of the intervention on brain activity, particularly in the alpha frequency band (8–13 Hz) associated with sensory processing. We found that participants in the SES group improved their task performance after intervention and their scanning speed during and after intervention, while the sham group did not improve their task performance. However, the differences in task performance improvements between groups only approached significance. Furthermore, we found that alpha power was sensitive to the effects of SES; participants in the stimulation group exhibited enhanced brain signals associated with improved touch sensitivity likely due to the effects of SES on the central nervous system, while the increase in alpha power for the sham group was less pronounced. Our findings suggest that SES enhances texture discrimination after training and has a positive effect on sensory-related brain areas. Further research involving brain-injured patients is needed to confirm the potential benefit of our solution in neurorehabilitation.</p

    Enhancing touch sensibility by sensory retraining in a sensory discrimination task via haptic rendering

    Get PDF
    Stroke survivors are commonly affected by somatosensory impairment, hampering their ability to interpret somatosensory information. Somatosensory information has been shown to critically support movement execution in healthy individuals and stroke survivors. Despite the detrimental effect of somatosensory impairments on performing activities of daily living, somatosensory training—in stark contrast to motor training—does not represent standard care in neurorehabilitation. Reasons for the neglected somatosensory treatment are the lack of high-quality research demonstrating the benefits of somatosensory interventions on stroke recovery, the unavailability of reliable quantitative assessments of sensorimotor deficits, and the labor-intensive nature of somatosensory training that relies on therapists guiding the hands of patients with motor impairments. To address this clinical need, we developed a virtual reality-based robotic texture discrimination task to assess and train touch sensibility. Our system incorporates the possibility to robotically guide the participants' hands during texture exploration (i.e., passive touch) and no-guided free texture exploration (i.e., active touch). We ran a 3-day experiment with thirty-six healthy participants who were asked to discriminate the odd texture among three visually identical textures –haptically rendered with the robotic device– following the method of constant stimuli. All participants trained with the passive and active conditions in randomized order on different days. We investigated the reliability of our system using the Intraclass Correlation Coefficient (ICC). We also evaluated the enhancement of participants' touch sensibility via somatosensory retraining and compared whether this enhancement differed between training with active vs. passive conditions. Our results showed that participants significantly improved their task performance after training. Moreover, we found that training effects were not significantly different between active and passive conditions, yet, passive exploration seemed to increase participants' perceived competence. The reliability of our system ranged from poor (in active condition) to moderate and good (in passive condition), probably due to the dependence of the ICC on the between-subject variability, which in a healthy population is usually small. Together, our virtual reality-based robotic haptic system may be a key asset for evaluating and retraining sensory loss with minimal supervision, especially for brain-injured patients who require guidance to move their hands

    Enhancing touch sensibility with sensory electrical stimulation and sensory retraining

    Get PDF
    A large proportion of stroke survivors suffer from sensory loss, negatively impacting their independence, quality of life, and neurorehabilitation prognosis. Despite the high prevalence of somatosensory impairments, our understanding of somatosensory interventions such as sensory electrical stimulation (SES) in neurorehabilitation is limited. We aimed to study the effectiveness of SES combined with a sensory discrimination task in a well-controlled virtual environment in healthy participants, setting a foundation for its potential application in stroke rehabilitation. We employed electroencephalography (EEG) to gain a better understanding of the underlying neural mechanisms and dynamics associated with sensory training and SES. We conducted a single-session experiment with 26 healthy participants who explored a set of three visually identical virtual textures—haptically rendered by a robotic device and that differed in their spatial period—while physically guided by the robot to identify the odd texture. The experiment consisted of three phases: pre-intervention, intervention, and post-intervention. Half the participants received subthreshold whole-hand SES during the intervention, while the other half received sham stimulation. We evaluated changes in task performance—assessed by the probability of correct responses—before and after intervention and between groups. We also evaluated differences in the exploration behavior, e.g., scanning speed. EEG was employed to examine the effects of the intervention on brain activity, particularly in the alpha frequency band (8–13 Hz) associated with sensory processing. We found that participants in the SES group improved their task performance after intervention and their scanning speed during and after intervention, while the sham group did not improve their task performance. However, the differences in task performance improvements between groups only approached significance. Furthermore, we found that alpha power was sensitive to the effects of SES; participants in the stimulation group exhibited enhanced brain signals associated with improved touch sensitivity likely due to the effects of SES on the central nervous system, while the increase in alpha power for the sham group was less pronounced. Our findings suggest that SES enhances texture discrimination after training and has a positive effect on sensory-related brain areas. Further research involving brain-injured patients is needed to confirm the potential benefit of our solution in neurorehabilitation.</p

    Dorsolateral Prefrontal Transcranial Direct Current Stimulation Modulates Language Processing but Does Not Facilitate Overt Second Language Word Production.

    Get PDF
    Word retrieval in bilingual speakers partly depends on executive control systems in the left prefrontal cortex - including dorsolateral prefrontal cortex (DLPFC). We tested the hypothesis that DLPFC modulates word production of words specifically in a second language (L2) by measuring the effects of anodal transcranial direct current stimulation (anodal-tDCS) over the DLPFC on picture naming and word translation and on event-related potentials (ERPs) and their sources. Twenty-six bilingual participants with "unbalanced" proficiency in two languages were given 20 min of 1.5 mA anodal or sham tDCS (double-blind stimulation design, counterbalanced stimulation order, 1-week intersession delay). The participants then performed the following tasks: verbal and non-verbal fluency during anodal-tDCS stimulation and first and second language (L1 and L2) picture naming and translation [forward (L1 → L2) and backward (L2 → L1)] immediately after stimulation. The electroencephalogram (EEG) was recorded during picture naming and translation. On the behavioral level, anodal-tDCS had an influence on non-verbal fluency but neither on verbal fluency, nor on picture naming and translation. EEG measures revealed significant interactions between Language and Stimulation on picture naming around 380 ms post-stimulus onset and Translation direction and Stimulation on translation around 530 ms post-stimulus onset. These effects suggest that L2 phonological retrieval and phoneme encoding are spatially and temporally segregated in the brain. We conclude that anodal-tDCS stimulation has an effect at a neural level on phonological processes and, critically, that DLPFC-mediated activation is a constraint on language production specifically in L2

    Impairment of both languages in late bilinguals with dementia of the Alzheimer type

    Get PDF
    Neuropsychological theories raise the question if in late bilinguals with dementia of the Alzheimer type (DAT), the second language (L2) may be more impaired than the first (L1). We compared language performance in different tasks of oral comprehension (semantic and syntactic) and production (naming, repetition and fluency) in L1 and L2 in a group of 13 late proficient bilinguals wit DAT immersion, and a matched control group of 12 healthy late bilinguals. Two-way mixed repeated-measure ANOVAs with factors Language and Group revealed main effects of Group (p %lt; .05) indicating that DAT affects all aspects of language. There was no Group × Language interaction, suggesting that DAT affects both languages similarly. Our study thus shows that neurodegenerative diseases affect L1 and L2 in a parallel manner, particularly at the levels of semantic, lexical and syntactic processing. These results speak in favour of a shared L1 and L2 network in late bilinguals

    Naturalistic visualization of reaching movements using head-mounted displays improves movement quality compared to conventional computer screens and proves high usability.

    Get PDF
    BACKGROUND The relearning of movements after brain injury can be optimized by providing intensive, meaningful, and motivating training using virtual reality (VR). However, most current solutions use two-dimensional (2D) screens, where patients interact via symbolic representations of their limbs (e.g., a cursor). These 2D screens lack depth cues, potentially deteriorating movement quality and increasing cognitive load. Head-mounted displays (HMDs) have great potential to provide naturalistic movement visualization by incorporating improved depth cues, reduce visuospatial transformations by rendering movements in the space where they are performed, and preserve eye-hand coordination by showing an avatar-with immersive VR (IVR)-or the user's real body-with augmented reality (AR). However, elderly populations might not find these novel technologies usable, hampering potential motor and cognitive benefits. METHODS We compared movement quality, cognitive load, motivation, and system usability in twenty elderly participants (>59 years old) while performing a dual motor-cognitive task with different visualization technologies: IVR HMD, AR HMD, and a 2D screen. We evaluated participants' self-reported cognitive load, motivation, and usability using questionnaires. We also conducted a pilot study with five brain-injured patients comparing the visualization technologies while using an assistive device. RESULTS Elderly participants performed straighter, shorter duration, and smoother movements when the task was visualized with the HMDs than screen. The IVR HMD led to shorter duration movements than AR. Movement onsets were shorter with IVR than AR, and shorter for both HMDs than the screen, potentially indicating facilitated reaction times due to reduced cognitive load. No differences were found in the questionnaires regarding cognitive load, motivation, or usability between technologies in elderly participants. Both HMDs proved high usability in our small sample of patients. CONCLUSIONS HMDs are a promising technology to be incorporated into neurorehabilitation, as their more naturalistic movement visualization improves movement quality compared to conventional screens. HMDs demonstrate high usability, without decreasing participants' motivation, and might potentially lower cognitive load. Our preliminary clinical results suggest that brain-injured patients may especially benefit from more immersive technologies. However, larger patient samples are needed to draw stronger conclusions.*

    Balanced bilinguals favor lexical processing in their opaque language and conversion system in their shallow language

    Get PDF
    Referred to as orthographic depth, the degree of consistency of grapheme/phoneme correspondences varies across languages from high in shallow orthographies to low in deep orthographies. The present study investigates the impact of orthographic depth on reading route by analyzing evoked potentials to words in a deep (French) and shallow (German) language presented to highly proficient bilinguals. ERP analyses to German and French words revealed significant topographic modulations 240–280 ms post-stimulus onset, indicative of distinct brain networks engaged in reading over this time window. Source estimations revealed that these effects stemmed from modulations of left insular, inferior frontal and dorsolateral regions (German > French) previously associated to phonological processing. Our results show that reading in a shallow language was associated to a stronger engagement of phonological pathways than reading in a deep language. Thus, the lexical pathways favored in word reading are reinforced by phonological networks more strongly in the shallow than deep orthography

    Neue Seen als Folge des Gletscherschwundes im Hochgebirge : Chancen und Risiken – Formation de nouveaux lacs suite au recul des glaciers en haute montagne : chances et risques

    Get PDF
    Gletscherschmelze, Gletschersee, Wassernutzung Neue Seen als Folge des Gletscherschwundes im Hochgebirge: KlimaabhĂ€ngige Bildung und Herausforderungen fĂŒr eine nachhaltige Nutzung (Projekt NELAK des NFP 61). Weltweit schwinden die Gletscher rasant, auch die Alpen dĂŒrften ihre Gletscher in den kommenden Jahrzehnten weitgehend verlieren. In den eisfreien Gebieten bilden sich dabei zahlreiche neue Seen. Das Projekt NELAK behandelt in einem integrativ-multidisziplinĂ€ren Ansatz Fragen nach dem optimalen Umgang mit diesen neuen Elementen der Landschaft und des Wasserkreislaufs. In engem Kontakt mit Behörden und Wirtschaft werden Grundlagen zu relevanten Aspekten der Naturgefahren, der Wasserkraft, des Tourismus und des Rechts erarbeitet sowie an Fallbeispielen diskutiert. Der vorliegende Bericht enthĂ€lt eine erste systematische Wissensbasis sowie Empfehlungen fĂŒr die dringend notwendige Planung: Was kommt auf uns zu, was können wir tun und wie gehen wir am besten vor? Nouveaux lacs suite au recul des glaciers en haute montagne: dĂ©veloppement liĂ© au climat et dĂ©fis pour une utilisation durable (projet NELAK du PNR 61). Les glaciers dĂ©clinent Ă  toute vitesse dans le monde entier; les Alpes ne sont pas Ă©pargnĂ©es et devraient perdre la plupart de leurs glaciers au cours des prochaines dĂ©cennies, entraĂźnant la formation de nombreux nouveaux lacs. Le projet NELAK vise Ă  optimiser la gestion des nouveaux Ă©lĂ©ments du paysage et du cycle hydrologique par le biais d’une approche multidisciplinaire et intĂ©grĂ©e. Le contact Ă©troit avec les autoritĂ©s et les milieux Ă©conomiques a permis d’élaborer les bases des aspects importants concernant les dangers naturels, lâ€˜Ă©nergie hydraulique, le tourisme et le droit; ils sont illustrĂ©s Ă  partir dâ€˜Ă©tudes de cas. Ce rapport contient une premiĂšre base de connaissances systĂ©matiques ainsi que des recommandations pour la planification des mesures les plus urgentes: ce qui nous attend, ce que nous pouvons faire et comment le rĂ©aliser au mieux
    • 

    corecore