89 research outputs found

    A hierarchy of recurrent networks for speech recognition

    Get PDF
    Generative models for sequential data based on directed graphs of Restricted Boltzmann Machines (RBMs) are able to accurately model high dimensional sequences as recently shown. In these models, temporal dependencies in the input are discovered by either buffering previous visible variables or by recurrent connections of the hidden variables. Here we propose a modification of these models, the Temporal Reservoir Machine (TRM). It utilizes a recurrent artificial neural network (ANN) for integrating information from the input over time. This information is then fed into a RBM at each time step. To avoid difficulties of recurrent network learning, the ANN remains untrained and hence can be thought of as a random feature extractor. Using the architecture of multi-layer RBMs (Deep Belief Networks), the TRMs can be used as a building block for complex hierarchical models. This approach unifies RBM-based approaches for sequential data modeling and the Echo State Network, a powerful approach for black-box system identification. The TRM is tested on a spoken digits task under noisy conditions, and competitive performances compared to previous models are observed

    On computational power and the order-chaos phase transition in Reservoir Computing

    Get PDF
    Randomly connected recurrent neural circuits have proven to be very powerful models for online computations when a trained memoryless readout function is appended. Such Reservoir Computing (RC) systems are commonly used in two flavors: with analog or binary (spiking) neurons in the recurrent circuits. Previous work showed a fundamental difference between these two incarnations of the RC idea. The performance of a RC system built from binary neurons seems to depend strongly on the network connectivity structure. In networks of analog neurons such dependency has not been observed. In this article we investigate this apparent dichotomy in terms of the in-degree of the circuit nodes. Our analyses based amongst others on the Lyapunov exponent reveal that the phase transition between ordered and chaotic network behavior of binary circuits qualitatively differs from the one in analog circuits. This explains the observed decreased computational performance of binary circuits of high node in-degree. Furthermore, a novel mean-field predictor for computational performance is introduced and shown to accurately predict the numerically obtained results.

    Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons

    Get PDF
    The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons
    • …
    corecore