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Abstract

Generative models for sequential data based on directgzhgraf Restricted
Boltzmann Machines (RBMs) are able to accurately model digtensional se-
guences as recently shown. In these models, temporal depeed in the input
are discovered by either buffering previous visible vadgalor by recurrent con-
nections of the hidden variables. Here we propose a moddictaf these models,
the Temporal Reservoir Machine (TRM). It utilizes a recutrartificial neural

network (ANN) for integrating information from the input evtime. This infor-

mation is then fed into a RBM at each time step. To avoid diffies of recurrent
network learning, the ANN remains untrained and hence cathbeght of as

a random feature extractor. Using the architecture of rayer RBMs (Deep
Belief Networks), the TRMs can be used as a building blockctomplex hierar-

chical models. This approach unifies RBM-based approadresefjuential data
modeling and the Echo State Network, a powerful approachlémk-box system
identification. The TRM is tested on a spoken digits task umadésy conditions,

and competitive performances compared to previous modelstserved.

1 Introduction

Restricted Boltzmann Machines (RBMs) are rather simpleegaive models for which an efficient
maximum likelihood learning algorithm, contrastive digence (CD), exists (see [1]). RBMs turned
out to be suitable building blocks for more complex and vew@rful probabilistic models obtained
by stacking them “vertically”, yielding a hierarchical melccalled a Deep Belief Network (DBN,
see [2]). The DBN essentially benefits from the capabilitg BBM to learn a simpler representation
of its visible variables (its input). This simplified repeggation is appropriate to serve as the visible
variables in the next higher layer in the hierarchy of the DBéyond modeling static, i. e. iid.
data, RBMs have also been used for building models of seiglelata, i. e. of data which features
an inherent temporal dimension (e. g. videos, speech riegm)d Conditional RBMs (CRBMs),
where previous visible variables (from a time window of fixa@de) determine the biases for the
variables of the current time slice, have been shown in [3lcmurately model motion capture data
of humans. In [4], Recurrent Temporal RBMs (RTRBMs), whinkegrate information over time
via recurrent connections of the hidden variables, canrgéméithful video sequences of bouncing
balls illustrating their modeling power for high dimensabtime series.

In contrast to these RBM-basetbbabilistic models for time series, the Echo State Network (ESN),
introduced in [5], a powerful technique for black-box systa&lentification, classification etc., is
rooted mainly indynamical systems theory. An ESN can be interpreted as computing random fea-
tures of the input sequence via a randomly connected reduaréficial neural network (ANN).
These features are then fed into a simple memoryless redliwedr classifier, linear regressor)
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which is trained in a supervised way. For several tasks tahattractor learning etc., see [5, 6])
ESNs are state-of-the-art and unsurpassed in accuracy béiihg very efficient to train.

In this paper we propose a probabilistic model, the TempBesdervoir Machine (TRM), which
operates on sequential data and aims at unifying the adyestaf RBM-based models and ESNs.
It utilizes a random recurrent network as a feature extrantd models the time series by a directed
graph of RBMs. The architecture is tested on the classifinaif spoken digits.

2 Existing Models

Basic building block: Restricted Boltzmann Machine

The Restricted Boltzmann Machine [1] is an undirected gainer model involving the visible (ob-
servable) random variables (RVE) which may be real or binary, and the hidden (latent) vaesbl
H, which are commonly restricted to be binary. The RBM is defibg the joint distribution (for
real visible RVsl” and binary hidden RV#/):

p(V,H)=Z " exp (=|VI?/2+ H'WV + BLH + ByV),

whereZ is the so-called partition function ensuring normalizatend X T denotes the transposed
of a vectorX. By and By are the biases of the visible and hidden RVs &##" denotes the
weight matrix from the visible to the hidden RVs. Due to théngiar form of the exponent of
p(V, H), the conditional distributions( H |V') andp(V | H) both factorize and hence make inference
in a RBM easy as “explaining away” does not occur. LearningBMs is most commonly done by
contrastive divergence (CD), an algorithm which efficigaibproximates the gradient of the training
data likelihood.

RBM-based models for sequential data

We use the following notation. Th¥y real-valued visible variables at tinteare denoted aB; <
RNV and the correspondinyy binary hidden variables ad; € {0,1}"#. The visible variables
from the time stepr up to¢ are concatenated into a mati% = (V4,...,V;) ; H. is defined
analogously for the hidden variables.

RBMs have been used as building blocks in directed graphiodkels for time series modeling. The
basic idea is that at every time step a RBM models the correipg visible and hidden variables.
Visible or hidden RVs of previous time steps influence thérithistion of the current RVs by deter-
mining their biase$By and By, via directed connections. Conditional RBMs (CRBMSs), inlnoed
for time series modeling in [3], were shown to be able to aatmly model human motion capture
data. In CRBMs only directed connections from the visiblgaldesV,' , to V; andH,; are consid-
ered, wheren € N is called the model order. The graphical representatiohiefrhodel is shown
in Fig. 1 panelA. Hence in CRBMs the memory depth, the window of temporalrimtion inte-
gration, is explicitly given byn. If the data time series exhibits dependencies on long ttakes,

a high model order has to be chosen resulting in a large nuofbeeights to be learned (linear in
m).

A different model using RBMs, termed Recurrent Temporal REMRBM), was presented in [4].

In the RTRBM only connections froni{;_; to H; are considered. To facilitate learning in this
model, the activations of the hidden units are determinec leterministic mean field update.
The recurrent weights frorfl; _; to H, are then learned by backpropagation through time (BPTT),
which was introduced in the context of recurrent neural nétw in [7]. RTRBMs do not have a
fixed memory depth, they implicitly integrate informatioveo time in the activations of the hidden
units, enabling the model to learn long temporal relatigrsivith a limited number of parameters.
However, as known from literature, BPTT often suffers frdowsconvergence due to local minima
and bifurcations in the network phase space.

Echo State Networks and Reservoir Computing

Echo State Networks (ESNSs), introduced in [5], represertmproach for utilizing recurrent ANNs
for online/any-time computations (regression, clasdifica prediction/generation) on time series
based on the following principle. The input sequence is féd a recurrent ANN which is not



trained for the specific task at hand and hence can be regasdethdomly structured wrt. this task.
A memoryless linear readout (or a linear classifier) is theméd on the current network state in
order to carry out the target computation. In contrast tonlieg in recurrent networks with BPTT,
learning in ESNs only involves linear regression and isdfae cheap, robust and not plagued by
local minima. The “random preprocessing” in time perfornbgydan ESN is a very powerful tool,
especially for prediction of time series based on chaotraetbrs. In this context it has been shown
that appropriately generated networks for ESNs can staagga hmount of information about past
inputs, allowing ESNs to model temporal dependencies og tone scales (see [8]). Further, the
high performance of ESNs indicates that, for some taskslorarfeatures (at least when generated
in a suitable way) are superior to features learned in a sigegl way especially if little training
data/time is available. The basic idea of ESNs has beengezezt to a framework termed Reservoir
Computing (RC): The recurrent ANN of an ESN is replaced by aog-autonomous dynamical
system (the so-called reservoir) which implements a filfatsoinput. The target function is then
approximated by training a readout device on the outputisffilter (the current system state).

3 Temporal Reservoir Machine

Guided by the advantageous and disadvantageous of presfipusaches for time series modeling
summarized briefly above, we introduce a modification oféhmedels called Temporal Reservoir
Machine (TRM). The TRM is aimed at overcoming the limitasasf a fixed model order (memory

depth) of the CRBM and at the same time circumventing thelpm$ associated with learning via
BPTT which occur in the RTRBM, by using strategies from RC.

Definition of the TRM

The basic idea of the TRM is the following. In addition to thisible and hidden RVs we introduce
bias variabled3, for each time step. TheseB, determine the biases of the visible and hidden vari-
ablesV;, H, of the RBM at time step via a linear mapping. FurtheR, is given by a deterministic
function of the previous visible variablégtfl. Thus the bias RV$,; contain information of the
past input dat&;' ! that can be used by the RBM at time slider modeling the course of the time
series. We assum@; € [—1,1]V2, whereNp is the dimension of3,;.

Inspired by the ESN, we consider here the setup wiigris given by the activation of a recurrent
ANN that receives the visible variabl&$ as input at time&. We call this network the reservoir of
the TRM. In the spirit of the ESN approach, the reservoir Wweigatrix W E® (the recurrent con-
nections fromB,_; to B;) and the input matrixy’BV (the connections frori; to B;) are randomly
generated and they remain untrained. Only the connectiomns the reservoir to the visible and
hidden variable$?VVE, WHEB (the connections fronB, to V; and fromB, to H, respectively) are
adapted (see below). Thii can be interpreted as a collection of random features ofidterk of
the visible variabled’/~*. A full RBM is kept at each time step for modeling the jointtdisution

of H, andV, given the bias RVE3;. Formally the TRM is defined for a time series of lendthn
the following way:

T
(Vi HE,BY) = [[p(Ve Hi, BJVi ™ HY BT
t=1
T
= [Ip(Ve, Hi|Bi)p(Bi|Vi-1, Bi-1)
t=1
p(Vi, Hy|By) = Z ‘exp(—|Vil?/2+ H/ W™V, + HIWHEB, + V,)WVEB,)
p(Bt“/tflvBtfl) = 5(Bt _f(‘/;ﬁflaBtfl))v

The functionf(V;_1, B;_1) represents the update of the recurrent network (the reisgmbich
determines the deterministic update f&y (formulated here with Dirac’s).

If the update function (the dynamical systejf)s chosen such thds, is a simple delay line with
memory depthn (that stores the last visible variablesi/tt__,}%) then the TRM architecture is equiv-
alent the CRBM as applied to sequential data in [3]. It is afrse possible to generalize the TRM
model by replacingf (now implementing an ANN) with any input/output system tlganherates

suitable features.



A: Conditional RBM (CRBM) B: Temporal Reservoir Machine (TRM)
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Figure 1: A: The graphical structure of the CRBM. Previous visible Valga V'~ are buffered
and determine the biases of the visible and hidden RVs atutrertt time stepB: The graphical
structure of the TRM. A deterministic recurrent networkiwdgtateB; integrates information from
past visiblel~! and sets the biases for the hidden varialfle®f the RBM at timet.

In this paper the update functighwill be of the following form:

f(Vici,Bi—1) = (1=X)Bi—1 + A-tanh (WBBBt—l + WBVVt—1) ;
wheretanh denotes the hyperbolic tangent applied elementwise tmjtsti The parametex is
called leak rate and it has a strong influence the memory dptfe \ favors memory on longer time
scales). There exists a number of powerful heuristics irR@diterature concerning an appropriate
distribution for the weight matriced 2 and1WBY. Most commonly, these matrices are generated
probabilistically with carefully chosen spectral projiest In the experiments reported in this paper
the entries of/7BB andWBV are iid. according taV'(0, 1) and all weights with an absolute value
smaller than unity are set to zero. Further, the matfiX® is then scaled such that its spectral radius
is given by a parameter. The matrixW BV is scaled by a parametegy

Learning ina TRM

Learning the weight&/H'B and17VE from the recurrent network staf to the visible and hidden
variablesV; and H; in a TRM is done by maximum likelihood learning. The log likelod £ of
the training datd/;” for the TRM takes a simple factorized form. LB{V)T denote the values of
the variablesB! at stept that result (deterministically) from visible variablé§’ via the update
function f. The total likelihood( factorizes into likelihood<; for every time step:

c logp(Vi") =log | > p(Vi",H{,BY) | =log [ > p(Vi",H ,B(V)T)

T BT T
HT B H

Zlog (Zp Vi, Hi|B(V ) Zﬁt

The log likelihoodZ; for each time step is that of an ordinary RBM with biased’ VEB(V);,
WHBB(V), of the visible and hidden RVs. Hence learning is similar @réng in RBMs and can
be made stepwise at each time step:

AWHY o YT ((Hy @ Vi)g — (Hi @ Vi),
T

AWYE o Y (Vi)g = (Vi) ® BV,
T

AWHE o N ((Hy)y — (Hi) o) @ B(V),

t
where® denotes the outer product. The operatorgand(-)__ are the expectation operators of the
RBM with clamped visible variables to the training data afdhe RBM equilibrium distribution
respectively. The latter is approximated by a sample thabiained after-step Gibbs sampling,
yielding the so called contrastive divergence learning/©®hich has been successfully applied in
numerous studies.

=



Sampling from a TRM

Ancestral sampling from the TRM can be done in a straighivfod manner:

Sampling:
1.) initialize B;
2.) for te{l,...,T} do:

e sanple Vi, H; ~ p(V, Hy|B;), RBM sanpling step
e update B,y = f(V;,B;), network update step

Normally, the reservoir is initialized randomly, e. @; is drawn uniformly from[—1,1]"z,
The “RBM sanpl i ng st ep”is done by prolonged Gibbs sampling analogously to sargglin
RBMs.

Inference in a TRM

Exact inference in the TRM is tractable, sinogd? |V\") = [1/_, p(H:|V;, B:(V')) factorizes as
the bias variable®! are deterministic. The following algorithm sums up infexein the TRM:

Inference:
1.) initialize B
2.) for te{l,...,T} do:

e for iec{l,Ny} evaluate
p((Hy)i = 1|V;, By) = o(3; ng(m)j +3; M?B(Bt)j), i nference step

e update B;y1 = f(V4,B:), network update step

Hereo(z) = (1 + exp(—x)) ! denotes the logistic function.

Multi-layer TRMs

Mimicking the hierarchical structure of a DBN, TRMs can backied yielding a multi-layer model
for sequential data analogous to the CRBM. Learning is peréad layer-wise (“greedy”), i. e. at
each layer a full TRM is trained using the inferred distribatover the binary hidden variables of
the next lower layer as real-valued input data. The ratibeaind this hierarchical structure is that
higher levels are thought to be advantageous for repregentore abstract features and statistical
relationships on longer time scales. Sampling from the irtmyer model is then performed by
sampling from the undirected TRM at the top layer and a doasspsing directed connections.

Reducing the dimension of the ESN input

In general, input is fed into an ESN via a randomly generatedti matrix, denoted here &85V,
This works well if the input dimension is reasonably low. dvever the input dimension is high,
especially if there is a lot of redundancy across input dsi@ars, such a random input mapping will
drastically degrade the short-term memory of the ESN. finly speaking, this is because redun-
dant information is pushing the ESN dynamics in random tives, thereby destroying memory of
past inputs. Therefore directly applying an ESN as the vesein higher layers of a TRM, where
the visible layers often have a high dimension (300 to 10@uinexperiments, see below), will lead
to a poor modeling performance because all memory of prewibles is quickly lost.

A straightforward solution for solving this problem is topdy standard dimensionality reduction
techniques such as Principle Component Analysis to firstifsigntly reduce the dimension of the
visibles before feeding them into the ESN. As we will showhia éxperiments below, this procedure
can drastically increase the performance.

4 Speech recognition experiments

Here we present results of computer experiments with the WiRtre we illustrate the classification
of spoken digits with the TRM. Training was done with CD-1 anchomentum of 0.9 was used.



The learning rates were set@ - 102 and5 - 10~2 for the weightsiV VB andWHE respectively
in the first layer and t0.2 - 10~2 and5 - 10~2 in the second layer.

The spoken digits data set was constructed by taking thatesbtigits from the TI46 data set (which
is a subset of the well known TIDIGITS corpus) and concafegahem into a continuous stream
with random pauses between the digits. The data consisuttdrances of 10 digits by 5 different
female speakers, resulting in 500 spoken digits in totadiniing was performed on 300 randomly
drawn clean utterances and the data was labeled up to thestépdevel. For testing we used the
remaining 200 utterances and added 5 dB of babble noise fieNOISEX noise data setThis
generates a high-noise condition using noise which hasaime spectral properties as the digits
which need to be recognized. During testing we assumed hiease¢gmentation of the data was
given.

We pre-processed the speech stream using the Lyon Passiveddel [9]. The model consists
essentially of a filter bank which closely resembles thectigigy of the human ear to certain fre-
quencies, followed by a series of half-wave rectifiers anapéde gain controllers both modeling
the hair cell response in the human ear. After the pre-peiegsthe data is down-sampled to 94Hz,
and the number of frequency bands is 39. The Lyon Passive Bdelnhas previously been used
as pre-processing in a RC-based speech recognition sddlip The more classic MFCC speech
front-end which is the standard for HMM-based speech psiegss not well suited for ESN-based
speech recognition as the MFCC front-end has been spelsifesaiineered to circumvent some of
the problems of HMMs, and this is poorly matched to the way Efhdcess spatiotemporal data.

We trained a two-layer TRM with 300 hidden units and a resein600 units in both layers. We
added 10 binary visibles (and an additional silence labi) tothe second visible layer which are
used as label nodes, similar to the setup in [2]. After tragnihe first layer in an unsupervised
way, the second layer is trained to jointly model the datathedabels. We trained for 150 epochs
without fine-tuning by a wake-sleep or backpropagation rilgm. The word error rate (WER)
when sampling (using 30 steps of Gibbs sampling) from the TW&he clamping the lowest layer
to the input data is 14% (with a STD of 6%, best of 4.7%, avedtagesr 20 runs). When using
the model fully deterministically and training a linear deat function on the 300 hidden units of
the top layer, a WER of 13% (with a STD of 4%, best of 5.6%, avedagyver 20 runs) is obtained.
Learning the same architecture, but where the reservoir Ad\ifdplaced by a delay line of order
three yielding a CRBM, results in a sampling-based WER of %0 .2nd with a linear deterministic
classification in a WER of 38.7%.

We also compare the results to standard ESNs, which havensinggvoved noise robustness over
HMMs in previous work [11]. Applying a well-tuned ESN for dsification with a network size
of 600 neurons to the pre-processed data, yields a WER of %atétgged over 20 runs). For all
experiments with the TRM and the ESN the spectral radius wasosr = 0.9, the leak rate to
A = 0.8 and the input scaling togy = 0.5.

When classifying the digit stream (without pre-processinith\wyon Passive Ear model) using a
standard MFCC-HMM classifiet, we get a WER of 36.6%; but note that the HMM classifier was
applied on the unsegmented digit stream.

When we compare single layer vs. two-layer models for sm@lRivls (120-node reservoir and 300
hidden units per layer), the classification performancé wie Hinton-like classification is clearly
better for the two layer variant (WER 26.3%, STD 6.0%) thantfa single layer (55.2%, STD
6.8%) TRM.

When comparing to a CRBM of order 10 in the first layer and ordartBe second layer (300 hidden
units in each layer) it slightly more parameters than thereo TRM and performs significantly
worse: with a linear readout: WER 65.3%, STD 8.2%; with Hinstyle classification: WER:
77.6%, STD 10.0%.

Available online atittp://spib.rice.edu/spib/select_noise html

2For this we trained a HMM using the HTK toolkit on data from the AURORA catpThe AURORA
corpus is the TIDIGITS corpus together with standardized noise conditfdraining and testing. We trained
using a “multi-condition” setup which means that training occurs usingrakmeisy conditions. This classifier
is thus trained on more data and is optimized for noise robustness.



When applying the PCA dimensionality reduction to the ingfithe ESN in the second TRM layer,
we find that the 40 principal components capture almost alamae. Feeding these 40 latent vari-
ables to the ESN instead of the 300 hiddens allows the ESNwe aamuch longer short-term
memory. When training a two layer TRM using this technique gea WER of 7.0% with a linear
readout, and 11.7% using a Hinton-style classifications Timensionality reduction will become
even more important in larger TRM models with much wider kiddayers.

These results show the power of multi-layer TRMs for modgtind classifying pre-processed data
streams of spoken digits. Especially the comparison to RRBIZ, which has a simple delay line
instead of a recurrent network, emphasizes the usefulrfdgtedng the data through a recurrent
(untrained) ANN.

5 Discussion

We proposed a probabilistic generative model for sequletdia, the TRM, that extends previously
published models based on directed graphs of RBMs. The TR&tadvantage of two insights that
emerged in a branch of the recurrent ANN literature, nametyEcho State Network / Reservoir
Computing literature. First, randomly generated, unedinecurrent ANNs can store a consider-
able amount of information from the input history and thifohrmation can easily be extracted by
a simple, memoryless linear readout. Second, such randohisAN generated appropriately) also
compute interesting transformations of the input, i. efuldeatures, that are adequate for computa-
tions (e. g. classification) and/or for being fed into higsiages of an architecture. This is consistent
with the observation (see e. g. [12]) that random (untrdifiesture extractors can be more powerful
than feature extractors which are trained in a supervised gigen little labeled training data is
available. The TRM makes use of these insights by filterireyipus visible variables through a
random recurrent network and making this transformed dat#adble to the undirected model at the
current time step. The simulation results reported in tliggp on classification of spoken digits,
where TRMs outperform CRBMs and ESNs, underline the benafitembining the probabilistic
RBM framework with the random recurrent network approackdatio State Networks.

The TRM model has a couple of favorable properties. Comptdredhe CRBM (which can be
interpreted as a special case of the TRM) the “memory depsthiot restricted, hence the TRM
can more easily model statistical relationships which rektever long time scales. Furthermore,
in contrast to the RTRBM the TRM circumvents learning withTBR an algorithm that is able to
produced good results but which may suffer from slow cormecg due to vanishing gradients and
bifurcations in the network phase space. Instead of legrifia recurrent weights, the TRM uses
manifold random features of the input history (that may veellredundant to some extend) which
are made available to the probabilistic model at the cutier@ step. It is thus clear that the TRM
is not the “smallest” model for time series which uses RBMsathRer, the TRM trades model size
against training time by introducing the bias variablgs

The multi-layer TRM is a possible architecture for implertieg a hierarchical model based on the
Echo State Network / Reservoir Computing idea. Previowsrgits to construct such a model con-
sisting of multiple layers of ESNs (or other RC models) fditkie to the lack of efficient principles
for learning hidden variables/features in an unsuperwsayg which can be passed from lower to
higher layers (personal communication from a collabogatab). This problem is tackled in the
TRM by utilizing the powerful probabilistic RBM for which argedy, fast and accurate maximum
likelihood learning algorithm exists. The encouraging @imion results of the TRM provided in
this article recommend the TRM architecture as a possiblgiso to the previously encountered
problems. Nevertheless, an extensive evaluation of thelilipes and the limitations of the TRM
model has to be provided and is the subject of current work.

A obvious possible extension of the TRM can be obtained blaoapg the recurrent network im-
plementing the biase®; with a more general dynamical system (e. g. a suitable filearkbor
other input-output systems). This modeling freedom posdstaresting interface where task spe-
cific knowledge and educated guesses about the nature ofdhkem can be implemented into the
model, comparable to a well made choice kernel in suppotibvenachines. This will be in the
focus of future research.
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