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Abstract

Generative models for sequential data based on directed graphs of Restricted
Boltzmann Machines (RBMs) are able to accurately model highdimensional se-
quences as recently shown. In these models, temporal dependencies in the input
are discovered by either buffering previous visible variables or by recurrent con-
nections of the hidden variables. Here we propose a modification of these models,
the Temporal Reservoir Machine (TRM). It utilizes a recurrent artificial neural
network (ANN) for integrating information from the input over time. This infor-
mation is then fed into a RBM at each time step. To avoid difficulties of recurrent
network learning, the ANN remains untrained and hence can bethought of as
a random feature extractor. Using the architecture of multi-layer RBMs (Deep
Belief Networks), the TRMs can be used as a building block forcomplex hierar-
chical models. This approach unifies RBM-based approaches for sequential data
modeling and the Echo State Network, a powerful approach forblack-box system
identification. The TRM is tested on a spoken digits task under noisy conditions,
and competitive performances compared to previous models are observed.

1 Introduction

Restricted Boltzmann Machines (RBMs) are rather simple generative models for which an efficient
maximum likelihood learning algorithm, contrastive divergence (CD), exists (see [1]). RBMs turned
out to be suitable building blocks for more complex and very powerful probabilistic models obtained
by stacking them “vertically”, yielding a hierarchical model called a Deep Belief Network (DBN,
see [2]). The DBN essentially benefits from the capability ofa RBM to learn a simpler representation
of its visible variables (its input). This simplified representation is appropriate to serve as the visible
variables in the next higher layer in the hierarchy of the DBN. Beyond modeling static, i. e. iid.
data, RBMs have also been used for building models of sequential data, i. e. of data which features
an inherent temporal dimension (e. g. videos, speech recordings). Conditional RBMs (CRBMs),
where previous visible variables (from a time window of fixedsize) determine the biases for the
variables of the current time slice, have been shown in [3] toaccurately model motion capture data
of humans. In [4], Recurrent Temporal RBMs (RTRBMs), which integrate information over time
via recurrent connections of the hidden variables, can generate faithful video sequences of bouncing
balls illustrating their modeling power for high dimensional time series.

In contrast to these RBM-basedprobabilistic models for time series, the Echo State Network (ESN),
introduced in [5], a powerful technique for black-box system identification, classification etc., is
rooted mainly indynamical systems theory. An ESN can be interpreted as computing random fea-
tures of the input sequence via a randomly connected recurrent artificial neural network (ANN).
These features are then fed into a simple memoryless readout(linear classifier, linear regressor)
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which is trained in a supervised way. For several tasks (chaotic attractor learning etc., see [5, 6])
ESNs are state-of-the-art and unsurpassed in accuracy while being very efficient to train.

In this paper we propose a probabilistic model, the TemporalReservoir Machine (TRM), which
operates on sequential data and aims at unifying the advantages of RBM-based models and ESNs.
It utilizes a random recurrent network as a feature extractor and models the time series by a directed
graph of RBMs. The architecture is tested on the classification of spoken digits.

2 Existing Models

Basic building block: Restricted Boltzmann Machine

The Restricted Boltzmann Machine [1] is an undirected generative model involving the visible (ob-
servable) random variables (RVs)V , which may be real or binary, and the hidden (latent) variables
H, which are commonly restricted to be binary. The RBM is defined by the joint distribution (for
real visible RVsV and binary hidden RVsH):

p(V,H) = Z−1 exp
(

−‖V ‖2/2 +HTWHV V +BT

HH +BT

V V
)

,

whereZ is the so-called partition function ensuring normalization andXT denotes the transposed
of a vectorX. BH andBV are the biases of the visible and hidden RVs andWHV denotes the
weight matrix from the visible to the hidden RVs. Due to the bilinear form of the exponent of
p(V,H), the conditional distributionsp(H|V ) andp(V |H) both factorize and hence make inference
in a RBM easy as “explaining away” does not occur. Learning inRBMs is most commonly done by
contrastive divergence (CD), an algorithm which efficiently approximates the gradient of the training
data likelihood.

RBM-based models for sequential data

We use the following notation. TheNV real-valued visible variables at timet are denoted asVt ∈
R

NV and the correspondingNH binary hidden variables asHt ∈ {0, 1}NH . The visible variables
from the time stepτ up to t are concatenated into a matrixV t

τ = (V1, . . . , Vt) ; Ht
τ is defined

analogously for the hidden variables.

RBMs have been used as building blocks in directed graphicalmodels for time series modeling. The
basic idea is that at every time step a RBM models the corresponding visible and hidden variables.
Visible or hidden RVs of previous time steps influence the distribution of the current RVs by deter-
mining their biasesBH andBV via directed connections. Conditional RBMs (CRBMs), introduced
for time series modeling in [3], were shown to be able to accurately model human motion capture
data. In CRBMs only directed connections from the visible variablesV t

t−m toVt andHt are consid-
ered, wherem ∈ N is called the model order. The graphical representation of this model is shown
in Fig. 1 panelA. Hence in CRBMs the memory depth, the window of temporal information inte-
gration, is explicitly given bym. If the data time series exhibits dependencies on long time scales,
a high model order has to be chosen resulting in a large numberof weights to be learned (linear in
m).

A different model using RBMs, termed Recurrent Temporal RBM(RTRBM), was presented in [4].
In the RTRBM only connections fromHt−1 to Ht are considered. To facilitate learning in this
model, the activations of the hidden units are determined bya deterministic mean field update.
The recurrent weights fromHt−1 to Ht are then learned by backpropagation through time (BPTT),
which was introduced in the context of recurrent neural networks in [7]. RTRBMs do not have a
fixed memory depth, they implicitly integrate information over time in the activations of the hidden
units, enabling the model to learn long temporal relationships with a limited number of parameters.
However, as known from literature, BPTT often suffers from slow convergence due to local minima
and bifurcations in the network phase space.

Echo State Networks and Reservoir Computing

Echo State Networks (ESNs), introduced in [5], represent anapproach for utilizing recurrent ANNs
for online/any-time computations (regression, classification, prediction/generation) on time series
based on the following principle. The input sequence is fed into a recurrent ANN which is not
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trained for the specific task at hand and hence can be regardedas randomly structured wrt. this task.
A memoryless linear readout (or a linear classifier) is then trained on the current network state in
order to carry out the target computation. In contrast to learning in recurrent networks with BPTT,
learning in ESNs only involves linear regression and is therefore cheap, robust and not plagued by
local minima. The “random preprocessing” in time performedby an ESN is a very powerful tool,
especially for prediction of time series based on chaotic attractors. In this context it has been shown
that appropriately generated networks for ESNs can store a large amount of information about past
inputs, allowing ESNs to model temporal dependencies on long time scales (see [8]). Further, the
high performance of ESNs indicates that, for some tasks, random features (at least when generated
in a suitable way) are superior to features learned in a supervised way especially if little training
data/time is available. The basic idea of ESNs has been generalized to a framework termed Reservoir
Computing (RC): The recurrent ANN of an ESN is replaced by anynon-autonomous dynamical
system (the so-called reservoir) which implements a filter of its input. The target function is then
approximated by training a readout device on the output of this filter (the current system state).

3 Temporal Reservoir Machine

Guided by the advantageous and disadvantageous of previousapproaches for time series modeling
summarized briefly above, we introduce a modification of these models called Temporal Reservoir
Machine (TRM). The TRM is aimed at overcoming the limitations of a fixed model order (memory
depth) of the CRBM and at the same time circumventing the problems associated with learning via
BPTT which occur in the RTRBM, by using strategies from RC.

Definition of the TRM

The basic idea of the TRM is the following. In addition to the visible and hidden RVs we introduce
bias variablesBt for each time stept. TheseBt determine the biases of the visible and hidden vari-
ablesVt, Ht of the RBM at time stept via a linear mapping. Further,Bt is given by a deterministic
function of the previous visible variablesV t−1

1 . Thus the bias RVsBt contain information of the
past input dataV t−1

1 that can be used by the RBM at time slicet for modeling the course of the time
series. We assumeBt ∈ [−1, 1]NB , whereNB is the dimension ofBt.

Inspired by the ESN, we consider here the setup whereBt is given by the activation of a recurrent
ANN that receives the visible variablesVt as input at timet. We call this network the reservoir of
the TRM. In the spirit of the ESN approach, the reservoir weight matrixWBB (the recurrent con-
nections fromBt−1 toBt) and the input matrixWBV (the connections fromVt toBt) are randomly
generated and they remain untrained. Only the connections from the reservoir to the visible and
hidden variablesWVB, WHB (the connections fromBt to Vt and fromBt to Ht respectively) are
adapted (see below). ThusBt can be interpreted as a collection of random features of the history of
the visible variablesV t−1

1 . A full RBM is kept at each time step for modeling the joint distribution
of Ht andVt given the bias RVsBt. Formally the TRM is defined for a time series of lengthT in
the following way:

p(V T
1 , HT

1 , B
T
1 ) =

T
∏

t=1

p(Vt, Ht, Bt|V
t−1
1 , Ht−1

1 , Bt−1
1 )

=

T
∏

t=1

p(Vt, Ht|Bt)p(Bt|Vt−1, Bt−1)

p(Vt, Ht|Bt) := Z−1 exp
(

−‖Vt‖
2/2 +HT

t W
HVVt +HT

t W
HBBt + V T

t WVBBt

)

p(Bt|Vt−1, Bt−1) := δ(Bt − f(Vt−1, Bt−1)),

The functionf(Vt−1, Bt−1) represents the update of the recurrent network (the reservoir) which
determines the deterministic update forBt (formulated here with Dirac’sδ).

If the update function (the dynamical system)f is chosen such thatBt is a simple delay line with
memory depthm (that stores the lastm visible variablesV t−1

t−m) then the TRM architecture is equiv-
alent the CRBM as applied to sequential data in [3]. It is of course possible to generalize the TRM
model by replacingf (now implementing an ANN) with any input/output system thatgenerates
suitable features.
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A: Conditional RBM (CRBM) B: Temporal Reservoir Machine (TRM)

Figure 1: A: The graphical structure of the CRBM. Previous visible variablesV t−1
t−m are buffered

and determine the biases of the visible and hidden RVs at the current time step.B: The graphical
structure of the TRM. A deterministic recurrent network with stateBt integrates information from
past visibleV t−1

1 and sets the biases for the hidden variablesHt of the RBM at timet.

In this paper the update functionf will be of the following form:

f(Vt−1, Bt−1) := (1− λ)Bt−1 + λ · tanh
(

WBBBt−1 +WBVVt−1

)

,

wheretanh denotes the hyperbolic tangent applied elementwise to its input. The parameterλ is
called leak rate and it has a strong influence the memory depth(largeλ favors memory on longer time
scales). There exists a number of powerful heuristics in theRC literature concerning an appropriate
distribution for the weight matricesWBB andWBV. Most commonly, these matrices are generated
probabilistically with carefully chosen spectral properties. In the experiments reported in this paper
the entries ofWBB andWBV are iid. according toN (0, 1) and all weights with an absolute value
smaller than unity are set to zero. Further, the matrixWBB is then scaled such that its spectral radius
is given by a parameterσ. The matrixWBV is scaled by a parameterσBV

Learning in a TRM

Learning the weightsWHB andWVB from the recurrent network stateBt to the visible and hidden
variablesVt andHt in a TRM is done by maximum likelihood learning. The log likelihoodL of
the training dataV T

1 for the TRM takes a simple factorized form. LetB(V )T1 denote the values of
the variablesBT

1 at stept that result (deterministically) from visible variablesV T
1 via the update

functionf . The total likelihoodL factorizes into likelihoodsLt for every time stept:

L = log p(V T
1 ) = log





∑

HT

1
,BT

1

p(V T
1 , HT

1 , B
T
1 )



 = log





∑

HT

1

p(V T
1 , HT

1 , B(V )T1 )





=

T
∑

t=1

log

(

∑

Ht

p(Vt, Ht|B(V )t)

)

=

T
∑

t=1

Lt.

The log likelihoodLt for each time stept is that of an ordinary RBM with biasesWVBB(V )t,
WHBB(V )t of the visible and hidden RVs. Hence learning is similar to learning in RBMs and can
be made stepwise at each time step:

∆WHV ∝
T
∑

t=1

(〈Ht ⊗ Vt〉0 − 〈Ht ⊗ Vt〉∞)

∆WVB ∝
T
∑

t=1

(〈Vt〉0 − 〈Vt〉∞)⊗B(V )t

∆WHB ∝
T
∑

t=1

(〈Ht〉0 − 〈Ht〉∞)⊗B(V )t,

where⊗ denotes the outer product. The operators〈·〉
0

and〈·〉
∞

are the expectation operators of the
RBM with clamped visible variables to the training data and of the RBM equilibrium distribution
respectively. The latter is approximated by a sample that isobtained aftern-step Gibbs sampling,
yielding the so called contrastive divergence learning CD-n which has been successfully applied in
numerous studies.
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Sampling from a TRM

Ancestral sampling from the TRM can be done in a straight-forward manner:

Sampling:
1.) initialize B1

2.) for t ∈ {1, . . . , T} do:

• sample Vt, Ht ∼ p(Vt, Ht|Bt), RBM sampling step

• update Bt+1 = f(Vt, Bt), network update step

Normally, the reservoir is initialized randomly, e. g.B1 is drawn uniformly from[−1, 1]NB .
The “RBM sampling step” is done by prolonged Gibbs sampling analogously to sampling in
RBMs.

Inference in a TRM

Exact inference in the TRM is tractable, sincep(HT
1 |V

T
1 ) =

∏T

t=1
p(Ht|Vt, Bt(V )) factorizes as

the bias variablesBT
1 are deterministic. The following algorithm sums up inference in the TRM:

Inference:
1.) initialize B1

2.) for t ∈ {1, . . . , T} do:

• for i ∈ {1, NH} evaluate
p((Ht)i = 1|Vt, Bt) = σ(

∑

j W
HV
ij (Vt)j +

∑

j W
HB
ij (Bt)j), inference step

• update Bt+1 = f(Vt, Bt), network update step

Hereσ(x) = (1 + exp(−x))−1 denotes the logistic function.

Multi-layer TRMs

Mimicking the hierarchical structure of a DBN, TRMs can be stacked yielding a multi-layer model
for sequential data analogous to the CRBM. Learning is performed layer-wise (“greedy”), i. e. at
each layer a full TRM is trained using the inferred distribution over the binary hidden variables of
the next lower layer as real-valued input data. The rationalbehind this hierarchical structure is that
higher levels are thought to be advantageous for representing more abstract features and statistical
relationships on longer time scales. Sampling from the multi-layer model is then performed by
sampling from the undirected TRM at the top layer and a down-pass using directed connections.

Reducing the dimension of the ESN input

In general, input is fed into an ESN via a randomly generated input matrix, denoted here asWBV.
This works well if the input dimension is reasonably low. If however the input dimension is high,
especially if there is a lot of redundancy across input dimensions, such a random input mapping will
drastically degrade the short-term memory of the ESN. Intuitively speaking, this is because redun-
dant information is pushing the ESN dynamics in random directions, thereby destroying memory of
past inputs. Therefore directly applying an ESN as the reservoir in higher layers of a TRM, where
the visible layers often have a high dimension (300 to 1000 inour experiments, see below), will lead
to a poor modeling performance because all memory of previous visibles is quickly lost.

A straightforward solution for solving this problem is to apply standard dimensionality reduction
techniques such as Principle Component Analysis to first significantly reduce the dimension of the
visibles before feeding them into the ESN. As we will show in the experiments below, this procedure
can drastically increase the performance.

4 Speech recognition experiments

Here we present results of computer experiments with the TRMwhere we illustrate the classification
of spoken digits with the TRM. Training was done with CD-1 anda momentum of 0.9 was used.
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The learning rates were set to0.2 · 10−3 and5 · 10−3 for the weightsWVB andWHB respectively
in the first layer and to0.2 · 10−2 and5 · 10−2 in the second layer.

The spoken digits data set was constructed by taking the isolated digits from the TI46 data set (which
is a subset of the well known TIDIGITS corpus) and concatenating them into a continuous stream
with random pauses between the digits. The data consists of 10 utterances of 10 digits by 5 different
female speakers, resulting in 500 spoken digits in total. Training was performed on 300 randomly
drawn clean utterances and the data was labeled up to the timestep level. For testing we used the
remaining 200 utterances and added 5 dB of babble noise from the NOISEX noise data set1. This
generates a high-noise condition using noise which has the same spectral properties as the digits
which need to be recognized. During testing we assumed that the segmentation of the data was
given.

We pre-processed the speech stream using the Lyon Passive Ear model [9]. The model consists
essentially of a filter bank which closely resembles the selectivity of the human ear to certain fre-
quencies, followed by a series of half-wave rectifiers and adaptive gain controllers both modeling
the hair cell response in the human ear. After the pre-processing, the data is down-sampled to 94Hz,
and the number of frequency bands is 39. The Lyon Passive Ear model has previously been used
as pre-processing in a RC-based speech recognition setup [10]. The more classic MFCC speech
front-end which is the standard for HMM-based speech processing is not well suited for ESN-based
speech recognition as the MFCC front-end has been specifically engineered to circumvent some of
the problems of HMMs, and this is poorly matched to the way ESNs process spatiotemporal data.

We trained a two-layer TRM with 300 hidden units and a reservoir of 600 units in both layers. We
added 10 binary visibles (and an additional silence label unit) to the second visible layer which are
used as label nodes, similar to the setup in [2]. After training the first layer in an unsupervised
way, the second layer is trained to jointly model the data andthe labels. We trained for 150 epochs
without fine-tuning by a wake-sleep or backpropagation algorithm. The word error rate (WER)
when sampling (using 30 steps of Gibbs sampling) from the TRMwhile clamping the lowest layer
to the input data is 14% (with a STD of 6%, best of 4.7%, averaged over 20 runs). When using
the model fully deterministically and training a linear readout function on the 300 hidden units of
the top layer, a WER of 13% (with a STD of 4%, best of 5.6%, averaged over 20 runs) is obtained.
Learning the same architecture, but where the reservoir ANNis replaced by a delay line of order
three yielding a CRBM, results in a sampling-based WER of 70.2%, and with a linear deterministic
classification in a WER of 38.7%.

We also compare the results to standard ESNs, which have shown improved noise robustness over
HMMs in previous work [11]. Applying a well-tuned ESN for classification with a network size
of 600 neurons to the pre-processed data, yields a WER of 9.1% (averaged over 20 runs). For all
experiments with the TRM and the ESN the spectral radius was set to σ = 0.9, the leak rate to
λ = 0.8 and the input scaling toσBV = 0.5.

When classifying the digit stream (without pre-processing with Lyon Passive Ear model) using a
standard MFCC-HMM classifier2, we get a WER of 36.6%; but note that the HMM classifier was
applied on the unsegmented digit stream.

When we compare single layer vs. two-layer models for smallerTRMs (120-node reservoir and 300
hidden units per layer), the classification performance with the Hinton-like classification is clearly
better for the two layer variant (WER 26.3%, STD 6.0%) than forthe single layer (55.2%, STD
6.8%) TRM.

When comparing to a CRBM of order 10 in the first layer and order 3in the second layer (300 hidden
units in each layer) it slightly more parameters than the reported TRM and performs significantly
worse: with a linear readout: WER 65.3%, STD 8.2%; with Hinton-style classification: WER:
77.6%, STD 10.0%.

1Available online athttp://spib.rice.edu/spib/select noise.html
2For this we trained a HMM using the HTK toolkit on data from the AURORA corpus. The AURORA

corpus is the TIDIGITS corpus together with standardized noise conditionfor training and testing. We trained
using a “multi-condition” setup which means that training occurs using several noisy conditions. This classifier
is thus trained on more data and is optimized for noise robustness.
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When applying the PCA dimensionality reduction to the input of the ESN in the second TRM layer,
we find that the 40 principal components capture almost all variance. Feeding these 40 latent vari-
ables to the ESN instead of the 300 hiddens allows the ESN to have a much longer short-term
memory. When training a two layer TRM using this technique, weget a WER of 7.0% with a linear
readout, and 11.7% using a Hinton-style classification. This dimensionality reduction will become
even more important in larger TRM models with much wider hidden layers.

These results show the power of multi-layer TRMs for modeling and classifying pre-processed data
streams of spoken digits. Especially the comparison to the CRBM, which has a simple delay line
instead of a recurrent network, emphasizes the usefulness of filtering the data through a recurrent
(untrained) ANN.

5 Discussion

We proposed a probabilistic generative model for sequential data, the TRM, that extends previously
published models based on directed graphs of RBMs. The TRM takes advantage of two insights that
emerged in a branch of the recurrent ANN literature, namely the Echo State Network / Reservoir
Computing literature. First, randomly generated, untrained recurrent ANNs can store a consider-
able amount of information from the input history and this information can easily be extracted by
a simple, memoryless linear readout. Second, such random ANNs (if generated appropriately) also
compute interesting transformations of the input, i. e. useful features, that are adequate for computa-
tions (e. g. classification) and/or for being fed into higherstages of an architecture. This is consistent
with the observation (see e. g. [12]) that random (untrained) feature extractors can be more powerful
than feature extractors which are trained in a supervised way, given little labeled training data is
available. The TRM makes use of these insights by filtering previous visible variables through a
random recurrent network and making this transformed data available to the undirected model at the
current time step. The simulation results reported in this paper on classification of spoken digits,
where TRMs outperform CRBMs and ESNs, underline the benefitsof combining the probabilistic
RBM framework with the random recurrent network approach ofEcho State Networks.

The TRM model has a couple of favorable properties. Comparedthe the CRBM (which can be
interpreted as a special case of the TRM) the “memory depth” is not restricted, hence the TRM
can more easily model statistical relationships which extend over long time scales. Furthermore,
in contrast to the RTRBM the TRM circumvents learning with BPTT, an algorithm that is able to
produced good results but which may suffer from slow convergence due to vanishing gradients and
bifurcations in the network phase space. Instead of learning the recurrent weights, the TRM uses
manifold random features of the input history (that may wellbe redundant to some extend) which
are made available to the probabilistic model at the currenttime step. It is thus clear that the TRM
is not the “smallest” model for time series which uses RBMs. Rather, the TRM trades model size
against training time by introducing the bias variablesBt.

The multi-layer TRM is a possible architecture for implementing a hierarchical model based on the
Echo State Network / Reservoir Computing idea. Previous attempts to construct such a model con-
sisting of multiple layers of ESNs (or other RC models) failed due to the lack of efficient principles
for learning hidden variables/features in an unsupervisedway which can be passed from lower to
higher layers (personal communication from a collaborating lab). This problem is tackled in the
TRM by utilizing the powerful probabilistic RBM for which a greedy, fast and accurate maximum
likelihood learning algorithm exists. The encouraging simulation results of the TRM provided in
this article recommend the TRM architecture as a possible solution to the previously encountered
problems. Nevertheless, an extensive evaluation of the capabilities and the limitations of the TRM
model has to be provided and is the subject of current work.

A obvious possible extension of the TRM can be obtained by replacing the recurrent network im-
plementing the biasesBt with a more general dynamical system (e. g. a suitable filter bank or
other input-output systems). This modeling freedom poses an interesting interface where task spe-
cific knowledge and educated guesses about the nature of the problem can be implemented into the
model, comparable to a well made choice kernel in support vector machines. This will be in the
focus of future research.
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