648 research outputs found
The spatial coherence of noise fields evoked by continuous source distributions
In this work, analytic expressions for the spatial coherence of noise fields are derived in the modal domain with the aim of providing a sparse representation. For this purpose, the sound field in a region of interest is expressed in terms of a given pressure distribution on a virtual surrounding cylindrical or spherical surface. According to the Huygens-Fresnel principle, the sound pressure on this surface is represented by a continuous distribution of elementary line or point sources, where orthogonal basis functions characterize the spatial properties. To describe spatially windowed pressure distributions with arbitrary angular extensions, orthogonal basis functions of limited angular support are proposed. As special cases, circular and spherical pressure distributions with uncorrelated source modes of equal power are investigated. It is shown that these distributions result, respectively, in cylindrically isotropic and spherically isotropic, i.e., diffuse noise fields. The analytic expressions derived in this work allow for a prediction of the spatial coherence between arbitrary positions within the region of interest, such that no microphones need to be placed at the actual points of interest. Simulation results are presented to validate the derived relations.This work was supported by the Australian Research
Council (ARC) Discovery Projects funding scheme under
Project No. DP140103412
A unified evaluation of iterative projection algorithms for phase retrieval
Iterative projection algorithms are successfully being used as a substitute
of lenses to recombine, numerically rather than optically, light scattered by
illuminated objects. Images obtained computationally allow aberration-free
diffraction-limited imaging and the possibility of using radiation for which no
lenses exist. The challenge of this imaging technique is transfered from the
lenses to the algorithms. We evaluate these new computational ``instruments''
developed for the phase retrieval problem, and discuss acceleration strategies.Comment: 12 pages, 9 figures, revte
Elastic constants of beta-eucryptite: A density functional theory study
The five independent elastic constants of hexagonal -eucryptite have
been determined using density functional theory (DFT) total energy
calculations. The calculated values agree well, to within 15%, with the
experimental data. Using the calculated elastic constants, the linear
compressibility of -eucryptite parallel to the c-axis, , and
perpendicular to it, , have been evaluated. These values are in close
agreement to those obtained from experimentally known elastic constants, but
are in contradiction to the direct measurements based on a three-terminal
technique. The calculated compressibility parallel to the c-axis was found to
positive as opposed to the negative value obtained by direct measurements. We
have demonstrated that must be positive and discussed the implications
of a positive in the context of explaining the negative bulk thermal
expansion of -eucryptite.Comment: 3 eps figures, submitted for publicatio
Ag on Ge(111): 2D X-ray structure analysis of the (Wurzel)3 x (Wurzel)3 superstructure
We have studied the Ag/Ge(111)(Wurzel)3 x (Wurzel)3 superstructure by grazing-incidence X-ray diffraction. In our structural analysis we find striking similarities to the geometry of Au on Si(111). The Ag atoms form trimer clusters with an Ag-Ag distance of 2.94+-0.04°A with the centers of the trimers being located at the origins of the (Wurzel)3 x (Wurzel)3 lattice. The Ag layer is incomplete and at least one substrate layer is distorted
Correspondence Between Resting-State and Episodic Memory-Task Related Networks in Elderly Subjects
Resting-state fMRI studies demonstrated temporally synchronous fluctuations in brain activity among ensembles of brain regions, suggesting the existence of intrinsic functional networks. A spatial match between some of the resting-state networks and regional brain activation during cognitive tasks has been noted, suggesting that resting-state networks support particular cognitive abilities. However, the spatial match and predictive value of any resting-state network and regional brain activation during episodic memory is only poorly understood. In order to address this research gap, we obtained fMRI acquired both during rest and a face-name association task in 38 healthy elderly subjects. In separate independent component analyses, networks of correlated brain activity during rest or the episodic memory task were identified. For the independent components identified for task-based fMRI, the design matrix of successful encoding or retrieval trials was regressed against the time course of each of the component to identify significantly activated networks. Spatial regression was used to assess the match of resting-state networks against those related to successful memory encoding or retrieval. We found that resting-state networks covering the medial temporal, middle temporal, and frontal areas showed increased activity during successful encoding. Resting-state networks located within posterior brain regions showed increased activity during successful recognition. However, the level of resting-state network connectivity was not predictive of the task-related activity in these networks. These results suggest that a circumscribed number of functional networks detectable during rest become engaged during successful episodic memory. However, higher intrinsic connectivity at rest may not translate into higher network expression during episodic memory
A new type of reconstruction on the InSb() surface determined by grazing incidence X-ray diffraction
The (3×3) reconstruction of the InSb( ) surface has been investigated by grazing incidence X-ray diffraction and scanning tunneling microscopy. The structure is characterized by 6-atom rings on top of a slightly buckled InSb top double layer. Two types of rings have been found, an elliptic ring consisting of 4 In and 2 Sb atoms and a trigonal ring with 3 In and 3 Sb atoms. The bond angles and lengths are consistent with the concept of rehybridization and depolarization which explains the reconstructions of the (111) and (110) surfaces
The Ge(001) (2 × 1) reconstruction: asymmetric dimers and multilayer relaxation observed by grazing incidence X-ray diffraction
Grazing incidence X-ray diffraction has been used to analyze in detail the atomic structure of the (2 × 1) reconstruction of the Ge(001) surface involving far reaching subsurface relaxations. Two kinds of disorder models, a statistical and a dynamical were taken into account for the data analysis, both indicating substantial disorder along the surface normal. This can only be correlated to asymmetric dimers.
Considering a statistical disorder model assuming randomly oriented dimers the analysis of 13 symmetrically independent in-plane fractional order reflections and of four fractional order reciprocal lattice rods up to the maximum attainable momentum transfer qz = 3c* (c* = 1.77 × 10−1 Å−1) indicates the formation of asymmetric dimers characterized by R>D = 2.46(5) Å as compared to the bulk bonding length of R = 2.45 Å. The dimer height of Δ Z = 0.74(15) Å corresponds to a dimer buckling angle of 17(4)°. The data refinement using anisotropic thermal parameters leads to a bonding length of RD = 2.44(4) Å and to a large anisotropy of the root mean-square vibration amplitudes of the dimer atoms (u112) 1/2 = 0.25 Å, (u222)1/2 = 0.14 Å, (u332)1/2 = 0.50 Å). We have evidence for lateral and vertical disp tenth layer below the surface
A cascade of magnetic field induced spin transitions in LaCoO3
We present magnetization and magnetostriction studies of the insulating
perovskite LaCoO3 in magnetic fields approaching 100 T. In marked contrast with
expectations from single-ion models, the data reveal two distinct first-order
spin transitions and well-defined magnetization plateaux. The magnetization at
the higher plateau is only about half the saturation value expected for spin-1
Co3+ ions. These findings strongly suggest collective behavior induced by
strong interactions between different electronic -- and therefore spin --
configurations of Co3+ ions. We propose a model of these interactions that
predicts crystalline spin textures and a cascade of four magnetic phase
transitions at high fields, of which the first two account for the experimental
data.Comment: 5 pages + supplementary materials, 5 figure
- …