101 research outputs found

    Atrial fibrillation dynamics and ionic block effects in six heterogeneous human 3D virtual atria with distinct repolarization dynamics

    Get PDF
    Atrial fibrillation (AF) usually manifests as reentrant circuits propagating through the whole atria creating chaotic activation patterns. Little is yet known about how differences in electrophysiological and ionic properties between patients modulate reentrant patterns in AF. The goal of this study is to quantify how variability in action potential duration (APD) at different stages of repolarization determines AF dynamics and their modulation by ionic block using a set of virtual whole-atria human models. Six human whole-atria models are constructed based on the same anatomical structure and fiber orientation, but with different electrophysiological phenotypes. Membrane kinetics for each whole-atria model are selected with distinct APD characteristics at 20, 50, and 90% repolarization, from an experimentally calibrated population of human atrial action potential models, including AF remodeling and acetylcholine parasympathetic effects. Our simulations show that in all whole-atria models, reentrant circuits tend to organize around the pulmonary veins and the right atrial appendage, thus leading to higher dominant frequency (DF) and more organized activation in the left atrium than in the right atrium. Differences in APD in all phases of repolarization (not only APD90) yielded quantitative differences in fibrillation patterns with long APD associated with slower and more regular dynamics. Long APD50 and APD20 were associated with increased interatrial conduction block and interatrial differences in DF and organization index, creating reentry instability and self-termination in some cases. Specific inhibitions of IK1, INaK, or INa reduce DF and organization of the arrhythmia by enlarging wave meandering, reducing the number of secondary wavelets, and promoting interatrial block in all six virtual patients, especially for the phenotypes with short APD at 20, 50, and/or 90% repolarization. This suggests that therapies aiming at prolonging the early phase of repolarization might constitute effective antiarrhythmic strategies for the pharmacological management of AF. In summary, simulations report significant differences in atrial fibrillatory dynamics resulting from differences in APD at all phases of repolarization

    High arrhythmic risk in antero-septal acute myocardial ischemia is explained by increased transmural reentry occurrence

    Get PDF
    Acute myocardial ischemia is a precursor of sudden arrhythmic death. Variability in its manifestation hampers understanding of arrhythmia mechanisms and challenges risk stratification. Our aim is to unravel the mechanisms underlying how size, transmural extent and location of ischemia determine arrhythmia vulnerability and ecG alterations. High performance computing simulations using a human torso/biventricular biophysically-detailed model were conducted to quantify the impact of varying ischemic region properties, including location (LAD/LcX occlusion), transmural/subendocardial ischemia, size, and normal/slow myocardial propagation. ecG biomarkers and vulnerability window for reentry were computed in over 400 simulations for 18 cases evaluated. Two distinct mechanisms explained larger vulnerability to reentry in transmural versus subendocardial ischemia. Macro-reentry around the ischemic region was the primary mechanism increasing arrhythmic risk in transmural versus subendocardial ischemia, for both LAD and LcX occlusion. transmural micro-reentry at the ischemic border zone explained arrhythmic vulnerability in subendocardial ischemia, especially in LAD occlusion, as reentries were favoured by the ischemic region intersecting the septo-apical region. St elevation reflected ischemic extent in transmural ischemia for LCX and LAD occlusion but not in subendocardial ischemia (associated with mild St depression). the technology and results presented can inform safety and efficacy evaluation of anti-arrhythmic therapy in acute myocardial ischemia

    Mechanisms and prognostic impact of myocardial ischaemia in hypertrophic cardiomyopathy

    Get PDF
    Despite the progress made in risk stratification, sudden cardiac death and heart failure remain dreaded complications for hypertrophic cardiomyopathy (HCM) patients. Myocardial ischaemia is widely acknowledged as a contributor to cardiovascular events, but the assessment of ischaemia is not yet included in HCM clinical guidelines. This review aims to evaluate the HCM-specific pro-ischaemic mechanisms and the potential prognostic value of imaging for myocardial ischaemia in HCM. A literature review was performed using PubMed to identify studies with non-invasive imaging of ischaemia (cardiovascular magnetic resonance, echocardiography, and nuclear imaging) in HCM, prioritising studies published after the last major review in 2009. Other studies, including invasive ischaemia assessment and post-mortem histology, were also considered for mechanistic or prognostic relevance. Pro-ischaemic mechanisms in HCM reviewed included the effects of sarcomeric mutations, microvascular remodelling, hypertrophy, extravascular compressive forces and left ventricular outflow tract obstruction. The relationship between ischaemia and fibrosis was re-appraised by considering segment-wise analyses in multimodal imaging studies. The prognostic significance of myocardial ischaemia in HCM was evaluated using longitudinal studies with composite endpoints, and reports of ischaemia-arrhythmia associations were further considered. The high prevalence of ischaemia in HCM is explained by several micro- and macrostructural pathological features, alongside mutation-associated energetic impairment. Ischaemia on imaging identifies a subgroup of HCM patients at higher risk of adverse cardiovascular outcomes. Ischaemic HCM phenotypes are a high-risk subgroup associated with more advanced left ventricular remodelling, but further studies are required to evaluate the independent prognostic value of non-invasive imaging for ischaemia

    Electrocardiogram Analysis Reveals Ionic Current Dysregulation Relevant for Atrial Fibrillation

    Get PDF
    Antiarrhythmic drug choice for atrial fibrillation (AF) neglects the individual ionic current profile of the patient, even though it determines drug safety and efficacy. We hypothesize that the electrocardiogram (ECG) might contain information critical for pharmacological treatment personalization. Thus, this study aims to identify the extent of atrial ionic information embedded in the ECG, using multi-scale modeling and simulation. A dataset of 1,000 simulated ECGs was computed using a population of human-based whole-atria models with 200 individual ionic profiles and 5 different torso-atria orientations. A regression neural network was built to predict key atrial ionic conductances based on P- and Ta_a -wave biomarkers. The neural network predicted, with >80% precision, the density of seven ionic currents relevant for AF, namely, ultra-rapid (IKur_{Kur} ), rapid (IKr_{Kr} ), outward transient (Ito_{to} ), inward rectifier K+^+ (IK1_{K1} ), L-type Ca2+^{2+} (ICaL_{CaL} ), Na+^+ /K+^+ pump (INaK_{NaK} ) and fast Na+^+ (INa_{Na}) currents. These ionic densities were identified through the P- (i.e., INa_{Na}), Ta - (i.e., IK1_{K1} , INaK_{NaK}) or both waves (i.e., IKur_{Kur} , IKr_{Kr} , Ito_{to} , ICaL_{CaL}), providing a non- invasive characterization of the atrial electrophysiology. This could improve patient stratification and cardiac safety and the efficacy of AF pharmacological treatment

    Electrophysiological mechanisms underlying T wave pseudonormalisation on stress ECGs in hypertrophic cardiomyopathy

    Get PDF
    Background: Pseudonormal T waves may be detected on stress electrocardiograms (ECGs) in hypertrophic cardiomyopathy (HCM). Either myocardial ischaemia or purely exercise-induced changes have been hypothesised to contribute to this phenomenon, but the precise electrophysiological mechanisms remain unknown. Methods: Computational models of human HCM ventricles (n = 20) with apical and asymmetric septal hypertrophy phenotypes with variable severities of repolarisation impairment were used to investigate the effects of acute myocardial ischaemia on ECGs with T wave inversions at baseline. Virtual 12-lead ECGs were derived from a total of 520 biventricular simulations, for cases with regionally ischaemic K+ accumulation in hypertrophied segments, global exercise-induced serum K+ increases, and/or increased pacing frequency, to analyse effects on ECG biomarkers including ST segments, T wave amplitudes, and QT intervals. Results: Regional ischaemic K+ accumulation had a greater impact on T wave pseudonormalisation than exercise-induced serum K+ increases, due to larger reductions in repolarisation gradients. Increases in serum K+ and pacing rate partially corrected T waves in some anatomical and electrophysiological phenotypes. T wave morphology was more sensitive than ST segment elevation to regional K+ increases, suggesting that T wave pseudonormalisation may sometimes be an early, or the only, ECG feature of myocardial ischaemia in HCM. Conclusions: Ischaemia-induced T wave pseudonormalisation can occur on stress ECG testing in HCM before significant ST segment changes. Some anatomical and electrophysiological phenotypes may enable T wave pseudonormalisation due to exercise-induced increased serum K+ and pacing rate. Consideration of dynamic T wave abnormalities could improve the detection of myocardial ischaemia in HCM

    Mechanisms of ischaemia-induced arrhythmias in hypertrophic cardiomyopathy: a large-scale computational study

    Get PDF
    Aims: Lethal arrhythmias in hypertrophic cardiomyopathy (HCM) are widely attributed to myocardial ischaemia and fibrosis. How these factors modulate arrhythmic risk remains largely unknown, especially as invasive mapping protocols are not routinely used in these patients. By leveraging multiscale digital twin technologies, we aim to investigate ischaemic mechanisms of increased arrhythmic risk in HCM. Methods and results: Computational models of human HCM cardiomyocytes, tissue, and ventricles were used to simulate outcomes of Phase 1A acute myocardial ischaemia. Cellular response predictions were validated with patch-clamp studies of human HCM cardiomyocytes (n = 12 cells, N = 5 patients). Ventricular simulations were informed by typical distributions of subendocardial/transmural ischaemia as analysed in perfusion scans (N = 28 patients). S1-S2 pacing protocols were used to quantify arrhythmic risk for scenarios in which regions of septal obstructive hypertrophy were affected by (i) ischaemia, (ii) ischaemia and impaired repolarization, and (iii) ischaemia, impaired repolarization, and diffuse fibrosis. HCM cardiomyocytes exhibited enhanced action potential and abnormal effective refractory period shortening to ischaemic insults. Analysis of ∼75 000 re-entry induction cases revealed that the abnormal HCM cellular response enabled establishment of arrhythmia at milder ischaemia than otherwise possible in healthy myocardium, due to larger refractoriness gradients that promoted conduction block. Arrhythmias were more easily sustained in transmural than subendocardial ischaemia. Mechanisms of ischaemia–fibrosis interaction were strongly electrophysiology dependent. Fibrosis enabled asymmetric re-entry patterns and break-up into sustained ventricular tachycardia. Conclusion: HCM ventricles exhibited an increased risk to non-sustained and sustained re-entry, largely dominated by an impaired cellular response and deleterious interactions with the diffuse fibrotic substrate

    Effects of ranolazine on the arrhythmic substrate in hypertrophic cardiomyopathy

    Get PDF
    Introduction: Hypertrophic cardiomyopathy (HCM) is a leading cause of lethal arrhythmias in the young. Although the arrhythmic substrate has been hypothesised to be amenable to late Na+ block with ranolazine, the specific mechanisms are not fully understood. Therefore, this study aimed to investigate the substrate mechanisms of safety and antiarrhythmic efficacy of ranolazine in HCM. Methods: Computational models of human tissue and ventricles were used to simulate the electrophysiological behaviour of diseased HCM myocardium for variable degrees of repolarisation impairment, validated against in vitro and clinical recordings. S1-S2 pacing protocols were used to quantify arrhythmic risk in scenarios of (i) untreated HCM-remodelled myocardium and (ii) myocardium treated with 3µM, 6µM and 10µM ranolazine, for variable repolarisation heterogeneity sizes and pacing rates. ECGs were derived from biventricular simulations to identify ECG biomarkers linked to antiarrhythmic effects. Results: 10µM ranolazine given to models manifesting ventricular tachycardia (VT) at baseline led to a 40% reduction in number of VT episodes on pooled analysis of >40,000 re-entry inducibility simulations. Antiarrhythmic efficacy and safety were dependent on the degree of repolarisation impairment, with optimal benefit in models with maximum JTc interval <370 ms. Ranolazine increased risk of VT only in models with severe-extreme repolarisation impairment. Conclusion: Ranolazine efficacy and safety may be critically dependent upon the degree of repolarisation impairment in HCM. For moderate repolarisation impairment, reductions in refractoriness heterogeneity by ranolazine may prevent conduction blocks and re-entry. With severe-extreme disease substrates, reductions of the refractory period can increase re-entry sustainability
    corecore