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Abstract 

Antiarrhythmic drug choice for atrial fibrillation (AF) 
neglects the individual ionic current profile of the patient, 
even though it determines drug safety and efficacy. We 
hypothesize that the electrocardiogram (ECG) might 
contain information critical for pharmacological 
treatment personalization. Thus, this study aims to identify 
the extent of atrial ionic information embedded in the ECG, 
using multi-scale modeling and simulation. 

A dataset of 1,000 simulated ECGs was computed using 
a population of human-based whole-atria models with 200 
individual ionic profiles and 5 different torso-atria 
orientations. A regression neural network was built to 
predict key atrial ionic conductances based on P- and Ta-
wave biomarkers.  
The neural network predicted, with >80% precision, the 
density of seven ionic currents relevant for AF, namely, 
ultra-rapid (IKur), rapid (IKr), outward transient (Ito), 
inward rectifier K+ (IK1), L-type Ca2+ (ICaL), Na+/K+ pump 
(INaK) and fast Na+ (INa) currents. These ionic densities 
were identified through the P- (i.e., INa), Ta- (i.e., IK1, INaK) 
or both waves (i.e., IKur, IKr, Ito, ICaL), providing a non-
invasive characterization of the atrial electrophysiology. 
This could improve patient stratification and cardiac 
safety and the efficacy of AF pharmacological treatment. 

1. Introduction 

Pharmacological cardioversion is a fundamental pillar 
of rhythm-control therapy for atrial fibrillation (AF). 
Numerous antiarrhythmic drugs have been recommended 
as first-line treatment in hemodynamically stable 
patients [1]. Some of these, however, are contraindicated 
in the context of associated heart disease, given possible 
cardiotoxicity and proarrhythmia. Interestingly, while 
proarrhythmic cardiotoxicity has also been strongly 
associated with the ionic current profile of the patient [2], 
the latter has so far not been considered for treatment 
personalization. Inter-patient variability in the ionic 
current profile is also expected to influence antiarrhythmic 
drug efficacy [3], so that neglecting it could explain the 

limited success of AF pharmacological treatment and the 
high rate of cardiotoxic adverse events.  

Albeit ignoring the atrial ionic current profile for drug 
choice might be due to the inability for its non-invasive 
characterization, previous studies have observed that 
analyzing the electrocardiogram (ECG) might reveal atrial 
conduction properties, the clinical stage of AF [4] or even 
the percentage of atrial fibrosis [5]. Thus, we hypothesize 
that the ECG might also contain information on the ionic 
current properties, which would improve pharmacological 
treatment personalization, cardiac safety and efficacy. In 
this regard, modeling and simulations provide a means for 
generating a well-controlled and rich dataset combining 
known ionic parameters and associated ECGs, in contrast 
to clinical recordings. Accordingly, this study aims to 
assess the prognostic value of the ECG for inferring the 
atrial ionic current profile, using modeling and simulation.   

2. Methods 

A dataset of 1,000 ECGs, computed in a population of 
200 human-based whole-atria models and considering 5 
torso-atria orientations (Figure 1), was used to predict the 
ionic current profile of the atria. The methodology from 
single cell to body surface level is described below.   

2.1. Population of virtual patient models 

An in-silico population of atrial cardiomyocyte models 
was developed as described in [2]. Key conductances and 
permeabilities of the CRN model [6] were sampled up to 
±50% of their control values to capture ionic current 
variability. Experimental data obtained from human AF 
and control patients [7] was used for calibration, resulting 
in 200 atrial cardiomyocyte models (Figure 1C).   

Every cardiomyocyte model populated one human-
based whole-atria model, by assigning the single-cell 
properties to the left atrial tissue and scaling them in the 
remaining atrial regions [8] (Figure 1B-C). Regional 
heterogeneities in conduction velocity and anisotropy ratio 
were likewise considered [8], setting the longitudinal 
conduction velocity in the bulk tissue to 80 cm/s.   
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Sinus rhythm was simulated in the virtual cohort of 200 
whole-atria models for 5 beats, starting with the steady-
state conditions at single cell. The 3D monodomain 
equation of the transmembrane voltage was solved using 
the MonoAlg3D program [9]. 

2.2. Electrocardiogram analysis  

Standard 12-lead and extended 15-lead [4] ECGs were 
computed as in [10] during the sixth sinus rhythm beat. The 
atrial geometry was rotated ±30º around the y- and z-axis, 
resulting in 5 ECG calculations per whole-atria model 
(Figure 1A). Six biomarkers, namely duration, amplitude, 
area, Shannon entropy, sample entropy and complexity [4], 
were calculated lead-wise from the P- and Ta-wave. Three 
additional biomarkers were obtained for the P-wave: actual 
duration (as the last activation time extracted from the 
simulations), dispersion and V1 terminal force.  

 
Figure 1. Simulated 15-lead ECG in the cohort of virtual patient 
models. Colors for the action potentials (Vm) in C) like in B).  

2.3. Regression with neural networks 

A complete dataset was generated considering the P- 
and Ta-wave biomarkers from 1,000 ECGs (ECG for 200 
whole-atria models with 5 torso-atria orientations). The 
dataset was partitioned into four sub-datasets to compare 
the prognostic value of P- vs. Ta-wave and 12- vs. 15-lead 
ECG for predicting the ionic current densities of the atria.  

A regression neural network was built as in [5], 

randomly allocating 70-15-15% of the data for training, 
validation and testing, respectively. The performance was 
assessed through the root mean squared error (RMSE). 
Furthermore, a multi-class classification problem was set 
by grouping the ionic current distribution into low ([–50, –
20] %), middle ((–20, +20) %) or high ([+20, +50] %) ionic 
density, allowing evaluation of precision and recall.      

3. Results and discussion 

3.1. Fast Na+ and inward rectifier K+ currents 
dictate P- and Ta-wave duration, respectively 

Figure 2 illustrates the influence of the fast Na+ (INa) and 
inward rectifier K+ (IK1) currents on the P- and Ta-wave and 
the neural network prediction of their ionic densities.  

INa and IK1 were markedly associated with the P- and Ta-
wave duration, respectively, with their up-regulation 
causing a prominent wave shortening (Figure 2, top). 
Accordingly, the neural network predicted their ionic 
current density with an error below 5%  (Figure 2, bottom).  

 
Figure 2. Effects of INa and IK1 on the P- and Ta-wave (lead V6). 
Performance, root mean squared error (RMSE), for the prediction 
of INa and IK1 density. CTRL: Control ionic current density.   

 
3.2. Rapid rectifier K+ and Na+/K+ pump 
currents determine the amplitude and complexity 
of the Ta-wave 

Figure 3 illustrates the prediction of the rapid rectifier 
K+ (IKr), transient outward K+ (Ito) and Na+/K+ pump (INaK) 
densities. Average errors below 12% were obtained for all 
three currents, as they were key modulators of the Ta-wave.   

Ta-wave amplitude and area showed a proportional 
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relationship with INaK, with high INaK density causing large 
Ta-waves in the precordial leads (Figure 3, top). The 
amplitude was to a lower extent associated with IKr, 
although IKr primarily influenced the signal complexity. As 
such, elevated IKr yielded less complex Ta-waves, (i.e., 
characterized by fewer local peaks), potentially due to a 
more homogeneous cellular repolarization.  

Ito influenced both P- and Ta-wave biomarkers. While 
high Ito density increased Ta-wave sample entropy, it 
reduced P-wave Shannon entropy. Moreover, elevated Ito 
decreased P-wave amplitude and area, due to a reduction 
in the action potential amplitude. However, P-wave 
biomarkers showed a predominant relationship with INa.  

 
Figure 3. Effects of INaK on the Ta-wave (lead V6). Prediction of 
INaK, IKr and Ito density. Colors and abbreviations as in Figure 2. 

3.3.  Electrocardiogram metrics identify ionic 
current dysregulation relevant to AF 

Figure 4 illustrates precision, recall and confusion 
matrix for the classification of the ultra-rapid rectifier 
K+ (IKur), L-type Ca2+ (ICaL), IKr, IK1, INaK and INa density, 
using P- and Ta-wave biomarkers from the 12-lead ECG. 

As anticipated in Figure 2, very high precision and 
recall were obtained for INa classification. An accurate 
estimation of INa density could be crucial for AF treatment 
with class Ic agents, such as flecainide or propafenone. 
These drugs are the preferred choice for AF cardioversion, 
only contraindicated in structurally severe or ischemic 
heart disease [1]. However, previous in-silico studies have 
shown that flecainide caused depolarization abnormalities 
in cells with low INa density [2].  

Similarly, repolarization abnormalities, such as early 
and delayed afterdepolarizations [11], and increased 
automaticity [12] have been documented for INaK and IK1 

inhibition. Paradoxically, increased IK1 and INaK is a 
hallmark of AF, so that blocking either current represents 
a well-established approach for AF termination [11,12]. 
Accordingly, an accurate, non-invasive characterization of 
IK1 and INaK density (as illustrated in Figure 4) could help 
planning safer and more efficacious AF pharmacological 
treatments with IK1 and INaK inhibitors.   

 
 High Density (>20%) Low Density (<-20%) 
 Precision Recall Precision Recall 
IKur 0.71 0.29 0.78 0.37 
IKr 0.83 0.79 0.81 0.81 
IK1 0.92 0.98 0.97 0.92 
ICaL 0.82 0.50 0.81 0.59 
INaK 0.78 0.78 0.85 0.70 
INa 0.94 1.00 0.97 1.00 

Figure 4. Confusion matrix, precision and recall for the multi-
class classification of IKur, IKr, IK1, ICaL, INaK and INa density. 
Abbreviations: L-M-H: Low, middle and high density.  

Multiple class III agents, such as amiodarone, 
dronedarone, ibutilide and vernakalant, block IKr, IKur or 
both. Pharmacological IKr inhibitors are used with caution, 
given potential QT prolongation and risk for polymorphic 
ventricular tachycardia. Accordingly, knowing IKr density 
(Figure 4: precision and recall around 80%,), could reduce 
the number of proarrhythmic adverse events.   

Still, the lack of safety associated with IKr blockers made 
AF pharmacological treatment to consider atrial-selective 
targets, such as IKur. IKur inhibition, however, has shown 
limited efficacy in clinical trials, potentially due to IKur 
down-regulation in AF patients [13]. Thus, estimating IKur 
density could enable a better use of IKur inhibitors, such as 
vernakalant. In this sense, a high precision was obtained 
for IKur classification, despite a low recall (Figure 4). 

Similar results were obtained for ICaL classification. 
Estimating ICaL down-regulation with high precision 
(Figure 4) could help inferring about the stage of AF 
electrophysiological remodeling. Moreover, since baseline 
INa and ICaL densities have been suggested to play an 
important role on the efficacy of blocking the inward 
currents [14], estimating them could be crucial for the 
selection of class Ic and class IV antiarrhythmic drugs.    
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3.4.  Both P- and Ta-wave are needed for 
characterizing the atrial ionic profile  

The RMSE differed less than 1% when the neural 
network was trained with 12- or 15-lead ECG, with the 
latter adding marginal gain. However, the prediction of all 
ionic densities required biomarkers from the P- (i.e., INa) 
Ta- (i.e., IK1, INaK), or both waves (i.e., Ito, IKr, IKur, ICaL). 
This poses the question as to whether the Ta-wave could be 
obtained through an improved electrode configuration 
[15], so that adenosine administration could be avoided. 

4. Conclusion 

The ionic current profile of the atria has been non-
invasively characterized in a virtual cohort of patient 
models, showing that ionic current dysregulations critical 
for AF can be identified through the analysis of the P- and 
Ta-wave. All simulations were conducted using the same 
atrial geometry and electrode positions. However, the size 
and shape of the atria, structural heterogeneities (i.e., atrial 
fibrosis) and the distance of the electrodes with respect to 
the heart are known factors that influence the duration and 
amplitude of ECG waves [5].  

Therefore, although further work is needed to take these 
parameters into account, the non-invasive characterization 
of the atrial ionic profile could improve patient 
stratification, cardiac safety and the efficacy of AF 
pharmacological treatment.    
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