139 research outputs found

    R-matrix calculation of electron collisions with electronically excited O2 molecules

    Full text link
    Low-energy electron collisions with O2_2 molecules are studied using the fixed-bond R-matrix method. In addition to the O2_2 X3Σg−{X}^3\Sigma_{g}^- ground state, integrated cross sections are calculated for elecron collisions with the a1Δg{a}^1\Delta_{g} and b1Σg+{b}^1\Sigma_{g}^+ excited states of O2_2 molecules. 13 target electronic states of O2_2 are included in the model within a valence configuration interaction representations of the target states. Elastic cross sections for the a1Δg{a}^1\Delta_{g} and b1Σg+{b}^1\Sigma_{g}^+ excited states are similar to the cross sections for the X3Σg−{X}^3\Sigma_{g}^- ground state. As in case of excitation from the X3Σg−{X}^3\Sigma_{g}^- state, the O2−_2^- Πu\Pi_u resonance makes the dominant contribution to excitation cross sections from the a1Δg{a}^1\Delta_{g} and b1Σg+{b}^1\Sigma_{g}^+ states. The magnitude of excitation cross sections from the a1Δg{a}^1\Delta_{g} state to the b1Σg+{b}^1\Sigma_{g}^+ state is about 10 time larger than the corresponding cross sections from the X3Σg−{X}^3\Sigma_{g}^- to the b1Σg+{b}^1\Sigma_{g}^+ state. For this a1Δg{a}^1\Delta_{g} →\to b1Σg+{b}^1\Sigma_{g}^+ transition, our cross section at 4.5 eV agrees well with the available experimental value. These results should be important for models of plasma discharge chemistry which often requires cross sections between the excited electronic states of O2_2.Comment: 26 pages, 10 figure

    Electron attachment to valence-excited CO

    Get PDF
    The possibility of electron attachment to the valence 3Π^{3}\Pi state of CO is examined using an {\it ab initio} bound-state multireference configuration interaction approach. The resulting resonance has 4Σ−^{4}\Sigma^{-} symmetry; the higher vibrational levels of this resonance state coincide with, or are nearly coincident with, levels of the parent a3Πa^{3}\Pi state. Collisional relaxation to the lowest vibrational levels in hot plasma situations might yield the possibility of a long-lived CO−^- state.Comment: Revtex file + postscript file for one figur

    The Dipole Moments and Molar Refractions of Several Trans-Beta-Nitrostyrenes

    Get PDF
    The dipole moments and molar refractions are reported for p-nitrostyrene (4.24 D, 44.3 ml.), trans-betanitrostyrene (4.50 D, 45.7 ml.), the p-methoxy (5.45 D, 56.3 ml.), p-methyl (4.97 D, 52.0 ml.), p-fluoro (3-12 D, 45.5ml), p-chloro (2.90 D, 51.8 ml.), p-bromo (3.02 D, 54.4 ml.), p-iodo (3.26 D, 58.0 ml.), p-nitro (0.83 D, 52.0 ml.), and p-cyano 0.96 D, 47.9 ml.) derivatives of trans-beta-nitrostyrene. It is suggested that the large dipole moments obtained for the p-nitro and p-cyano-beta-nitrostyrenes may be due to unusually large atomic polarizations which would not be taken into consideration by the present method of measurement and calculation

    Towards the electron EDM search: Theoretical study of HfF+

    Get PDF
    We report first ab initio relativistic correlation calculations of potential curves for ten low-lying electronic states, effective electric field on the electron and hyperfine constants for the ^3\Delta_1 state of cation of a heavy transition metal fluoride, HfF^+, that is suggested to be used as the working state in experiments to search for the electric dipole moment of the electron. It is shown that HfF^+ has deeply bound ^1\Sigma^+ ground state, its dissociation energy is D_e=6.4 eV. The ^3\Delta_1 state is obtained to be the relatively long-lived first excited state lying about 0.2 eV higher. The calculated effective electric field E_eff=W_d|\Omega| acting on an electron in this state is 5.84*10^{24}Hz/(e*cm)Comment: 4 page

    Configuration interaction calculation of hyperfine and P,T-odd constants on ^{207}PbO excited states for the electron EDM experiments

    Full text link
    We report first configuration interaction calculations of hyperfine constants A_\parallel and the effective electric field W_d acting on the electric dipole moment of the electron, in two excited electronic states of ^{207}PbO. The obtained hyperfine constants, A_\parallel = -3826 MHz for the a(1) state and A_\parallel = 4887 MHz for the B(1) state, are in very good agreement with the experimental data, -4113 MHz and 5000 \pm 200 MHz, respectively. We find W_d = -(6.1 ^{+1.8}_{-0.6}) 10^{24} Hz/(e cm) for a(1), and W_d = (8.0 \pm 1.6) 10^{24} Hz/(e cm) for B(1). The obtained values are analyzed and compared to recent relativistic coupled cluster results and a semiempirical estimate of W_d for the a(1) state.Comment: 6 pages, REVTeX4 style, submitted to Pthys.Rev.

    Towards the electron EDM search. Theoretical study of PbF

    Full text link
    We report ab initio relativistic correlation calculations of potential curves and spectroscopic constants for four lowest-lying electronic states of the lead monofluoride. We also calculated parameters of the spin-rotational Hamiltonian for the ground and the first excited states including P,T-odd and P-odd terms. In particular, we have obtained hyperfine constants of the 207^{207}Pb nucleus. For the 2Π1/2^2\Pi_{1/2} state A⊄=−6859.6A_\perp=-6859.6 MHz, A∄=9726.9A_\|=9726.9 MHz and for the A2ÎŁ1/2+^2\Sigma^+_{1/2} A⊄=1720.8A_\perp=1720.8 MHz, A∄=3073.3A_\|=3073.3 MHz. Our values of the ground state hyperfine constants are in good agreement with the previous theoretical studies. We discuss and explain seeming disagreement in the sign of the constant A⊄A_\perp with the recent experimental data. The effective electric field on the electron EeffE_{eff}, which is important for the planned experiment to search for the electric dipole moment of the electron, is found to be 3.3 * 10^{10} V/cm

    Quenching of Excited Na due to He Collisions

    Get PDF
    The quenching and elastic scattering of excited Sodium by collisions with Helium have been investigated for energies between 10(exp -13) eV and 10 eV. With the ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained from multireference single- and double-excitation configuration interaction approach, we carried out scattering calculations by the quantum-mechanical molecular-orbital close-coupling method. Cross sections for quenching reactions and elastic collisions are presented. Quenching and elastic collisional rate coefficients as a function of temperature between 1 micro-K and 10,000 K are also obtained. The results are relevant to modeling non-LTE effects on Na D absorption lines in extrasolar planets and brown dwarfs

    Variational Hilbert space truncation approach to quantum Heisenberg antiferromagnets on frustrated clusters

    Full text link
    We study the spin-12\frac{1}{2} Heisenberg antiferromagnet on a series of finite-size clusters with features inspired by the fullerenes. Frustration due to the presence of pentagonal rings makes such structures challenging in the context of quantum Monte-Carlo methods. We use an exact diagonalization approach combined with a truncation method in which only the most important basis states of the Hilbert space are retained. We describe an efficient variational method for finding an optimal truncation of a given size which minimizes the error in the ground state energy. Ground state energies and spin-spin correlations are obtained for clusters with up to thirty-two sites without the need to restrict the symmetry of the structures. The results are compared to full-space calculations and to unfrustrated structures based on the honeycomb lattice.Comment: 22 pages and 12 Postscript figure

    Ab initio coupled-cluster and configuration interaction calculations for 16-O using V_UCOM

    Full text link
    Using the ground-state energy of 16-O obtained with the realistic V_UCOM interaction as a test case, we present a comprehensive comparison of different configuration interaction (CI) and coupled-cluster (CC) methods, analyzing the intrinsic advantages and limitations of each of the approaches. In particular, we use the importance-truncated (IT) CI and no-core shell model (NCSM) schemes with up to 4-particle-4-hole (4p4h) excitations as well as the size extensive CC methods with a complete treatment of one- and two-body clusters (CCSD) and a non-iterative treatment of connected three-body clusters via the completely renormalized correction to the CCSD energy defining the CR-CC(2,3) approach. We discuss the impact of the center-of-mass contaminations, the choice of the single-particle basis, and size-extensivity on the resulting energies. When the IT-CI and IT-NCSM methods include the 4p4h excitations and when the CC calculations include the 1p1h, 2p2h, and 3p3h clusters, as in the CR-CC(2,3) approach, we observe an excellent agreement among the different methodologies. This shows that despite their individual limitations, the IT-CI, IT-NCSM, and CC methods can provide precise and consistent ab initio nuclear structure predictions. Furthermore, the IT-CI, IT-NCSM, and CC ground-state energy values obtained with 16-O are in good agreement with the experimental value, proving that the V_UCOM two-body interaction allows for a realistic description of binding energies for heavier nuclei and that all of the methods used in this study account for most of the relevant particle correlation effects.Comment: 20 pages, 4 figures, 1 table (v2: extended version in response to referees' comments

    Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces

    Get PDF
    Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
    • 

    corecore