409 research outputs found

    Observations of cosmic ray induced phosphenes

    Get PDF
    Phosphene observations by astronauts on flights near and far from earth atmosphere are discussed. It was concluded that phosphenes could be observed by the naked eye. Further investigation is proposed to determine realistic human tolerance levels for extended missions and to evaluate the need to provide special spacecraft shielding

    The role of manganese dysregulation in neurological disease: emerging evidence

    Get PDF
    Manganese is an essential trace metal. The dysregulation of manganese seen in a broad spectrum of neurological disorders reflects its importance in brain development and key neurophysiological processes. Historically, the observation of acquired manganism in miners and people who misuse drugs provided early evidence of brain toxicity related to manganese exposure. The identification of inherited manganese transportopathies, which cause neurodevelopmental and neurodegenerative syndromes, further corroborates the neurotoxic potential of this element. Moreover, manganese dyshomoeostasis is also implicated in Parkinson's disease and other neurodegenerative conditions, such as Alzheimer's disease and Huntington's disease. Ongoing and future research will facilitate the development of better targeted therapeutical strategies than are currently available for manganese-associated neurological disorders

    Quaternary pulse position modulation electronics for free-space laser communications

    Get PDF
    The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (QPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented

    Hypercapnia increases ACE2 expression and pseudo-SARS-CoV-2 entry in bronchial epithelial cells by augmenting cellular cholesterol

    Get PDF
    Patients with chronic lung disease, obesity, and other co-morbid conditions are at increased risk of severe illness and death when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hypercapnia, the elevation of CO2 in blood and tissue, commonly occurs in patients with severe acute and chronic lung disease, including those with pulmonary infections, and is also associated with high mortality risk. We previously reported that hypercapnia increases viral replication and mortality of influenza A virus infection in mice. We have also shown that culture in elevated CO2 upregulates expression of cholesterol synthesis genes in primary human bronchial epithelial cells. Interestingly, factors that increase the cholesterol content of lipid rafts and lipid droplets, platforms for viral entry and assembly, enhance SARS-CoV-2 infection. In the current study, we investigated the effects of hypercapnia on ACE2 expression and entry of SARS-CoV-2 pseudovirus (p-SARS-CoV-2) into airway epithelial cells. We found that hypercapnia increased ACE2 expression and p-SARS-CoV-2 uptake by airway epithelium in mice, and in cultured VERO and human bronchial epithelial cells. Hypercapnia also increased total cellular and lipid raft-associated cholesterol in epithelial cells. Moreover, reducing cholesterol synthesis with inhibitors of sterol regulatory element binding protein 2 (SREBP2) or statins, and depletion of cellular cholesterol, each blocked the hypercapnia-induced increases in ACE2 expression and p-SARS-CoV-2 entry into epithelial cells. Cigarette smoke extract (CSE) also increased ACE2 expression, p-SARS-CoV-2 entry and cholesterol accumulation in epithelial cells, an effect not additive to that of hypercapnia, but also inhibited by statins. These findings reveal a mechanism that may account, in part, for poor clinical outcomes of SARS-CoV-2 infection in patients with advanced lung disease and hypercapnia, and in those who smoke cigarettes. Further, our results suggest the possibility that cholesterol-lowering therapies may be of particular benefit in patients with hypercapnia when exposed to or infected with SARS-CoV-2

    Co-combustion of sewage sludge with wood/coal in a circulating fluidised bed boiler - A study of NO and N2O emissions

    Get PDF
    Reduction of emissions of NO and N2O from co-combustion of wet or dried sewage sludge with coal or wood is investigated. This is motivated by the high nitrogen content in sewage sludge that may give rise to high emissions. An advanced air-staging method for combustion in circulating fluidised bed is applied. It is shown that with fluidised bed combustion the emissions are low as long as the sludge fraction is not too high (say, less than 25%), and the conversion of fuel nitrogen to NO or N2O is only a few percent. However, air staging as such is not efficient for high volatile fuels, and any air supply method can be applied in such a case, in contrast to combustion of coal, when the air supply arrangement has a decisive influence

    The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production

    Get PDF
    Mammalian cells increase transcription of genes for adaptation to hypoxia through the stabilization of hypoxia-inducible factor 1α (HIF-1α) protein. How cells transduce hypoxic signals to stabilize the HIF-1α protein remains unresolved. We demonstrate that cells deficient in the complex III subunit cytochrome b, which are respiratory incompetent, increase ROS levels and stabilize the HIF-1α protein during hypoxia. RNA interference of the complex III subunit Rieske iron sulfur protein in the cytochrome b–null cells and treatment of wild-type cells with stigmatellin abolished reactive oxygen species (ROS) generation at the Qo site of complex III. These interventions maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Antioxidants maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Exogenous hydrogen peroxide under normoxia prevented hydroxylation of HIF-1α protein and stabilized HIF-1α protein. These results provide genetic and pharmacologic evidence that the Qo site of complex III is required for the transduction of hypoxic signal by releasing ROS to stabilize the HIF-1α protein

    Light flash phenomenon seen by astronauts

    Get PDF
    The results from experiments conducted to characterize and elucidate light flashes seen by astronauts on Apollo 11, 12, 13, and 14 during transluna or transearth orbit are presented. The data show cosmic nuclei interacting with the visual apparatus causes the light flash phenomenon. The data also suggest that slow protons and helium ions with a stopping power greater than 10 KeV/micron will cause light flashes and streaks in the partially dark adapted eye. The effects of galactic cosmic nuclei interacting with man during long term missions are discussed
    corecore