329 research outputs found

    Combinatorial FSK modulation for power-efficient high-rate communications

    Get PDF
    Deep-space and satellite communications systems must be capable of conveying high-rate data accurately with low transmitter power, often through dispersive channels. A class of noncoherent Combinatorial Frequency Shift Keying (CFSK) modulation schemes is investigated which address these needs. The bit error rate performance of this class of modulation formats is analyzed and compared to the more traditional modulation types. Candidate modulator, demodulator, and digital signal processing (DSP) hardware structures are examined in detail. System-level issues are also discussed

    Multichannel demultiplexer/demodulator technologies for future satellite communication systems

    Get PDF
    NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies

    Quaternary pulse position modulation electronics for free-space laser communications

    Get PDF
    The development of a high data-rate communications electronic subsystem for future application in free-space, direct-detection laser communications is described. The dual channel subsystem uses quaternary pulse position modulation (QPPM) and operates at a throughput of 650 megabits per second. Transmitting functions described include source data multiplexing, channel data multiplexing, and QPPM symbol encoding. Implementation of a prototype version in discrete gallium arsenide logic, radiofrequency components, and microstrip circuitry is presented

    QPPM receiver for free-space laser communications

    Get PDF
    A prototype receiver developed at NASA Lewis Research Center for direct detection and demodulation of quaternary pulse position modulated (QPPM) optical carriers is described. The receiver enables dual-channel communications at 325-Megabits per second (Mbps) per channel. The optical components of the prototype receiver are briefly described. The electronic components, comprising the analog signal conditioning, slot clock recovery, matched filter and maximum likelihood data recovery circuits are described in more detail. A novel digital symbol clock recovery technique is presented as an alternative to conventional analog methods. Simulated link degradations including noise and pointing-error induced amplitude variations are applied. The bit-error-rate performance of the electronic portion of the prototype receiver under varying optical signal-to-noise power ratios is found to be within 1.5-dB of theory. Implementation of the receiver as a hybrid of analog and digital application specific integrated circuits is planned

    W/V-Band RF Propagation Experiment Design

    Get PDF
    The utilization of frequency spectrum for space-to-ground communications applications has generally progressed from the lowest available bands capable of supporting transmission through the atmosphere to the higher bands, which have required research and technological advancement to implement. As communications needs increase and the available spectrum in the microwave frequency bands (3 30 GHz) becomes congested globally, future systems will move into the millimeter wave (mm-wave) range (30 300 GHz). While current systems are operating in the Ka-band (20 30 GHz), systems planned for the coming decades will initiate operations in the Q-Band (33 50 GHz), V-Band (50 75 GHz) and W Band (75 110 GHz) of the spectrum. These bands offer extremely broadband capabilities (contiguous allocations of 500 MHz to 1GHz or more) and an uncluttered spectrum for a wide range of applications. NASA, DoD and commercial missions that can benefit from moving into the mm-wave bands include data relay and near-Earth data communications, unmanned aircraft communications, NASA science missions, and commercial broadcast/internet services, all able to be implemented via very small terminals. NASA Glenn Research Center has a long history of performing the inherently governmental function of opening new frequency spectrum by characterizing atmospheric effects on electromagnetic propagation and collaborating with the satellite communication industry to develop specific communications technologies for use by NASA and the nation. Along these lines, there are critical issues related to W/V-band propagation that need to be thoroughly understood before design of any operational system can commence. These issues arise primarily due to the limitations imposed on W/V-band signal propagation by the Earth s atmosphere, and to the fundamental lack of understanding of these effects with regards to proper system design and fade mitigation. In this paper, The GRC RF propagation team recommends measurements that are required to assure that the risk associated with the use of mm-wave is minimized. We develop first order beacon and transponder system payload requirements and beacon terminal requirements. We will suggest and discuss a possible hardware implementation for the space segment, as well for the ground segment. A discussion on a propagation measurement campaign for taking relevant statistical data is also included

    Progress on the Development of Future Airport Surface Wireless Communications Network

    Get PDF
    Continuing advances in airport surface management and improvements in airport surface safety are required to enable future growth in air traffic throughout the airspace, as airport arrival and departure delays create a major system bottleneck. These airport management and safety advances will be built upon improved communications, navigation, surveillance, and weather sensing, creating an information environment supporting system automation. The efficient movement of the digital data generated from these systems requires an underlying communications network infrastructure to connect data sources with the intended users with the required quality of service. Current airport surface communications consists primarily of buried copper or fiber cable. Safety related communications with mobile airport surface assets occurs over 25 kHz VHF voice and data channels. The available VHF spectrum, already congested in many areas, will be insufficient to support future data traffic requirements. Therefore, a broadband wireless airport surface communications network is considered a requirement for the future airport component of the air transportation system. Progress has been made on defining the technology and frequency spectrum for the airport surface wireless communications network. The development of a test and demonstration facility and the definition of required testing and standards development are now underway. This paper will review the progress and planned future work

    Co-combustion of sewage sludge with wood/coal in a circulating fluidised bed boiler - A study of NO and N2O emissions

    Get PDF
    Reduction of emissions of NO and N2O from co-combustion of wet or dried sewage sludge with coal or wood is investigated. This is motivated by the high nitrogen content in sewage sludge that may give rise to high emissions. An advanced air-staging method for combustion in circulating fluidised bed is applied. It is shown that with fluidised bed combustion the emissions are low as long as the sludge fraction is not too high (say, less than 25%), and the conversion of fuel nitrogen to NO or N2O is only a few percent. However, air staging as such is not efficient for high volatile fuels, and any air supply method can be applied in such a case, in contrast to combustion of coal, when the air supply arrangement has a decisive influence

    Variation in mitochondrial function in hypoxia-sensitive and hypoxia-tolerant human glioma cells

    Get PDF
    We have shown previously that human glioblastoma multiforme cells vary in their ability to survive under hypoxic conditions. Under oxygen limiting conditions, hypoxia-tolerant cells decrease their oxygen consumption rate whereas hypoxia-sensitive cells continue to consume oxygen at a relatively steady rate until the oxygen supply becomes exhausted. We now show that hypoxia-tolerant and hypoxia-sensitive cells exhibit distinct patterns of mitochondrial function in response to hypoxic challenge. Hypoxia-tolerant cell lines retain stable mitochondrial membrane potential and ATP concentration when incubated under oxygen limiting conditions. In addition, hypoxia-tolerant cell lines are consistently more sensitive to a wide spectrum of inhibitors of mitochondrial function than are hypoxia-sensitive cells. In contrast, the hypoxia-sensitive cells are unable to maintain stable mitochondrial membrane potential and ATP levels when incubated at reduced oxygen tension. These results demonstrate significant differences in the mitochondrial function between these two phenotypes and reinforce previous data that suggest a regulatory role for mitochondria in the development of hypoxia tolerance

    Detecting small low emission radiating sources

    Full text link
    The article addresses the possibility of robust detection of geometrically small, low emission sources on a significantly stronger background. This problem is important for homeland security. A technique of detecting such sources using Compton type cameras is developed, which is shown on numerical examples to have high sensitivity and specificity and also allows to assign confidence probabilities of the detection. 2D case is considered in detail

    Particulate matter Air Pollution induces hypermethylation of the p16 promoter Via a mitochondrial ROS-JNK-DNMT1 pathway

    Get PDF
    Exposure of human populations to chronically elevated levels of ambient particulate matter air pollution < 2.5 μm in diameter (PM2.5) has been associated with an increase in lung cancer incidence. Over 70% of lung cancer cell lines exhibit promoter methylation of the tumor suppressor p16, an epigenetic modification that reduces its expression. We exposed mice to concentrated ambient PM2.5 via inhalation, 8 hours daily for 3 weeks and exposed primary murine alveolar epithelial cells to daily doses of fine urban PM (5 µg/cm2). In both mice and alveolar epithelial cells, PM exposure increased ROS production, expression of the DNA methyltransferase 1 (DNMT1), and methylation of the p16 promoter. In alveolar epithelial cells, increased transcription of DNMT1 and methylation of the p16 promoter were inhibited by a mitochondrially targeted antioxidant and a JNK inhibitor. These findings provide a potential mechanism by which PM exposure increases the risk of lung cancer
    corecore