136 research outputs found

    Electronic reconstruction and enhanced superconductivity at La1.6x_{1.6-x}Nd0.4_{0.4}Srx_{x}CuO4_{4}/La1.55_{1.55}Sr0.45_{0.45}CuO4_{4} bilayer interface

    Full text link
    We report enhanced superconductivity in bilayer thin films consisting of superconducting La1.6x_{1.6-x}Nd0.4_{0.4}Srx_{x}CuO4_{4} with 0.06 x<\leq x< 0.20 and metallic but non-superconducting La1.55_{1.55}Sr0.45_{0.45}CuO4_{4}. These bilayers show a maximum increase in superconducting transition temperature (TcT_c) of more than 200% for xx = 0.06 while no change in TcT_c is observed for the bilayers with xx\geq 0.20. The analysis of the critical current and kinetic inductance data suggests 2-3 unit cells thick interfacial layer electronically perturbed to have a higher TcT_c. A simple charge transfer model with cation intermixing explains the observed TcT_c in bilayers. Still the unusually large thickness of interfacial superconducting layers can not be explained in terms of this model. We believe the stripe relaxation as well as the proximity effect also influence the superconductivity of the interface

    Current-induced metallic behavior in Pr0.5_{0.5}Ca0.5_{0.5}MnO3_3 thin films: competition between Joule heating and nonlinear conduction mechanism

    Get PDF
    Thin films of Pr0.5Ca0.5MnO3 manganites exhibiting charge/orbital-ordered properties with colossal magnetoresistance have been synthesized by the pulsed laser deposition technique on both (100)-SrTiO3 and (100)-LaAlO3 substrates. The effects of current-induced metallic-behavior of the films are investigated as a function of the temperature and the magnetic field. Calculations based on a heat transfer model across the substrate, and our resistivity measurements reveal effects of Joule heating on charge transport over certain ranges of temperatures and magnetic fields. Our results also indicate that a nonlinear conduction, which cannot be explained by homogeneous Joule heating of the film, is observed when the material is less resistive (10-2 W.cm). The origin of this behavior is explained with a model based on local thermal instabilities associated with phase-separation mechanism and a change in the long range charge-ordered state.Comment: To be published in Phys. Rev.

    Strain induced magnetic domain evolution and spin re-orientation transition in epitaxial manganite films

    Full text link
    The evolution of magnetic domain structure in epitaxial La0.625_{0.625}Ca0.375_{0.375}MnO3_3 films on (001) NdGaO3_3 is monitored as a function of temperature and magnetic field using Magnetic Force Microscopy. We see two distinct regions of magnetic orientational order; one in-plane displaying contrast-less image and the other tilted away from the film plane forming a distinct stripe pattern. A strong domain splitting is observed at the boundary of two regions, which is resilient to reorientation with temperature and magnetic field. We propose a model magnetic free energy functional to explain the mechanism of domain splitting seen in manganite films

    Magnetotransport in polycrystalline La2/3_{2/3}Sr1/3_{1/3}MnO3_{3} thin films of controlled granularity

    Full text link
    Polycrystalline La2/3_{2/3}Sr1/3_{1/3}MnO3_{3} (LSMO) thin films were synthesized by pulsed laser ablation on single crystal (100) yttria-stabilized zirconia (YSZ) substrates to investigate the mechanism of magneto-transport in a granular manganite. Different degrees of granularity is achieved by using the deposition temperature (TD_{D}) of 700 and 800 0^{0}C. Although no significant change in magnetic order temperature (TC_C) and saturation magnetization is seen for these two types of films, the temperature and magnetic field dependence of their resistivity (ρ\rho(T, H)) is strikingly dissimilar. While the ρ\rho(T,H) of the 800 0^{0}C film is comparable to that of epitaxial samples, the lower growth temperature leads to a material which undergoes insulator-to-metal transition at a temperature (TP_{P} \approx 170 K) much lower than TC_C. At T \ll TP_P, the resistivity is characterized by a minimum followed by ln \emph{T} divergence at still lower temperatures. The high negative magnetoresistance (\approx 20%) and ln \emph{T} dependence below the minimum are explained on the basis of Kondo-type scattering from blocked Mn-spins in the intergranular material. Further, a striking feature of the TD_D = 700 0^{0}C film is its two orders of magnitude larger anisotropic magnetoresistance (AMR) as compared to the AMR of epitaxial films. We attribute it to unquenching of the orbital angular momentum of 3d electrons of Mn ions in the intergranular region where crystal field is poorly defined.Comment: 26 pages, 7 figure

    Interface driven reentrant superconductivity in HoNi5_5-NbN-HoNi5_5 nanostructures

    Full text link
    Superconductivity (S) and ferromagnetism (F) are probed through transport and magnetization measurements in nanometer scale HoNi5_5-NbN (F-S) bilayers and HoNi5_5-NbN-HoNi5_5 (F-S-F) trilayers. The choice of materials has been made on the basis of their comparable ordering temperatures and strong magnetic anisotropy in HoNi5_5. We observe the normal state reentrant behavior in resistance vs. temperature plots of the F-S-F structures just below the superconducting transition in the limited range of HoNi5_5 layer thickness dHN_{HN} (20 nm << dHN_{HN} << 80 nm) when dNbN_{NbN} is fixed at \simeq 10 nm. The reentrance is quenched by increasing the out-of-plane (H_{\perp}) magnetic field and transport current where as in-plane (H_{\parallel}) field of \leq 1500 Oe has no effect on the reentrance. The thermally activated flux flow characteristics of the S, F-S and F-S-F layers reveal a transition from collective pinning to single vortex pinning as we place F layers on both sides of the S film. The origin of the reentrant behavior seen here in the range of 0.74 \leq TCurie_{Curie}/TC_C \leq 0.92 is attribute to a delicate balance between the magnetic exchange energy and the condensation energy in the interfacial regions of the trilayer.Comment: 13 pages and 5 figure

    Low-field microwave absorption in epitaxial La-Sr-Mn-O films resulting from the angle-tuned ferromagnetic resonance in the multidomain state

    Full text link
    We studied magnetic-field induced microwave absorption in 100-200 nm thick La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} films on SrTiO3_{3} substrate and found a low-field absorption with a very peculiar angular dependence: it appears only in the oblique field and is absent both in the parallel and in the perpendicular orientations. We demonstrate that this low-field absorption results from the ferromagnetic resonance in the multidomain state (domain-mode resonance). Its unusual angular dependence arises from the interplay between the parallel component of the magnetic field that drives the film into multidomain state and the perpendicular field component that controls the domain width through its effect on domain wall energy. The low-field microwave absorption in the multidomain state can be a tool to probe domain structure in magnetic films with in-plane magnetization.Comment: 9 pages, 9 Figure

    Interface superconductivity in La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_{4}/La1.84_{1.84}Sr0.16_{0.16}CuO4_{4} bilayers

    Get PDF
    We identify a distinct superconducting phase at the interface of a La1.48_{1.48}Nd0.4_{0.4}Sr0.12_{0.12}CuO4_4 (LNSCO)/La1.84_{1.84}Sr0.16_{0.16}CuO4_4 (LSCO) epitaxial bilayer system using ac screening measurements. A model based on inter-diffusion of quasiparticles and condensate at the interface yields a thickness of \sim 25 nm for the interfacial layer. Two-dimensional superconductivity of the interface layer appears to be governed by Kosterlitz-Thouless-Berezinskii transition. A parallel magnetic field suppresses the superconducting transition temperature of this layer with a pair breaking parameter α\alpha varying as H2H^2

    Two-dimensional electron-gas-like charge transport at magnetic Heusler alloy-SrTiO3_3 interface

    Get PDF
    We report remarkably low residual resistivity, giant residual resistivity ratio, free-electron-like Hall resistivity and high mobility (\approx 104^4 cm2^2V1^{-1}s1^{-1}) charge transport in epitaxial films of Co2_2MnSi and Co2_2FeSi grown on (001) SrTiO3_3. This unusual behavior is not observed in films deposited on other cubic oxide substrates of comparable lattice parameters. The scaling of the resistivity with thickness of the films allow extraction of interface conductance, which can be attributed to a layer of oxygen vacancies confined within 1.9 nm of the interface as revealed by atomically resolved electron microscopy and spectroscopy. The high mobility transport observed here at the interface of a fully spin polarized metal is potentially important for spintronics applications
    corecore