223 research outputs found

    Inhibitors of \u3cem\u3eN\u3csup\u3eα\u3c/sup\u3e\u3c/em\u3e-acetyl-l-ornithine Deacetylase: Synthesis, Characterization and Analysis of their Inhibitory Potency

    Get PDF
    A series of N α-acyl (alkyl)- and N α-alkoxycarbonyl-derivatives of l- and d-ornithine were prepared, characterized, and analyzed for their potency toward the bacterial enzyme N α-acetyl-l-ornithine deacetylase (ArgE). ArgE catalyzes the conversion of N α-acetyl-l-ornithine to l-ornithine in the fifth step of the biosynthetic pathway for arginine, a necessary step for bacterial growth. Most of the compounds tested provided IC50 values in the μM range toward ArgE, indicating that they are moderately strong inhibitors. N α-chloroacetyl-l-ornithine (1g) was the best inhibitor tested toward ArgE providing an IC50 value of 85 μM while N α-trifluoroacetyl-l-ornithine (1f), N α-ethoxycarbonyl-l-ornithine (2b), and N α-acetyl-d-ornithine (1a) weakly inhibited ArgE activity providing IC50 values between 200 and 410 μM. Weak inhibitory potency toward Bacillus subtilis-168 for N α-acetyl-d-ornithine (1a) and N α-fluoro- (1f), N α-chloro- (1g), N α-dichloro- (1h), and N α-trichloroacetyl-ornithine (1i) was also observed. These data correlate well with the IC50 values determined for ArgE, suggesting that these compounds might be capable of getting across the cell membrane and that ArgE is likely the bacterial enzymatic target

    The Interplay Between Charge Transfer, Rehybridization, and Atomic Charges in the Internal Geometry of Subunits in Noncovalent Interactions

    Get PDF
    When a noncovalent bond is formed, there is frequently some charge transfer from one subunit to the other. The interaction also causes changes in the atomic charges and hybridization patterns of bonding orbitals. The manner in which these various effects combine to cause elongations or contractions of bonds within the individual subunits is examined. In both the cases of CH···O H-bonds and P···N pnicogen bonds, the bond length changes are consistent with the guiding principles generally known as Bent’s rules

    Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur-Battery Cathode Material with High Capacity and Cycling Stability

    Full text link
    We report the synthesis of a graphene-sulfur composite material by wrapping polyethyleneglycol (PEG) coated submicron sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge, trapping soluble polysulfide intermediates and rendering the sulfur particles electrically conducting. The resulting graphene-sulfur composite showed high and stable specific capacities up to ~600mAh/g over more than 100 cycles, representing a promising cathode material for rechargeable lithium batteries with high energy density.Comment: published in Nano Letter

    Bemerkung zur Komplexbildung von Sulfonazo III mit Barium

    No full text
    • …
    corecore