30 research outputs found
CHROMOMETHYLTRANSFERASE3/KRYPTONITE maintains the sulfurea paramutation in Solanum lycopersicum
Paramutation involves the transfer of a repressive epigenetic mark from a silent allele to an active homolog and, consequently, non-Mendelian inheritance. In tomato, the sulfurea (sulf) paramutation is associated with a high level of CHG hypermethylation in a region overlapping with the transcription start site (TSS) of the SlTAB2 gene that affects chlorophyll synthesis. The CCG subcontext hypermethylation is under-represented at this region relative to CTG or CAG, implicating the CHROMOMETHYLTRANSFERASE3a (CMT3) in paramutation at this locus. Consistent with this interpretation, loss of CMT3 function leads to loss of the sulf chlorosis, the associated CHG hypermethylation, and paramutation. Loss of KRYPTONITE (KYP) histone methyltransferase function has a similar effect linked to reduced H3K9me2 at the promoter region of SlTAB2 and a shift in higher order chromatin structure at this locus. Mutation of the largest subunit of RNA polymerase V (PolV) in contrast does not affect sulf paramutation. These findings indicate the involvement of a CMT3/KYP–dependent feedback loop rather than the PolV-dependent pathway leading to RNA-directed DNA methylation (RdDM) in the maintenance of paramutation
CHROMOMETHYLTRANSFERASE3/ KRYPTONITE maintain the sulfurea paramutation in Solanum lycopersicum
Paramutation involves the transfer of a repressive epigenetic mark from a silent allele to an active homologue and, consequently, non-Mendelian inheritance. In tomato the sulfurea (sulf) paramutation is associated with a high level of CHG hypermethylation in a region overlapping the transcription start site of the SlTAB2 gene that affects chlorophyll synthesis. The CCG sub-context hypermethylation is under-represented at this region relative to CTG or CAG implicating the CHROMOMETHYLTRANSFERASE3 (CMT3) in paramutation at this locus. Consistent with this interpretation, loss of CMT3 function leads to loss of the sulf chlorosis, the associated CHG hypermethylation and paramutation. Loss of KRYPTONITE (KYP) histone methyl transferase function has a similar effect linked to reduced H3K9me2 at the promoter region of SlTAB2 and a shift in higher order chromatin structure at this locus. Mutation of the largest subunit of RNA polymerase V (PolV) in contrast does not affect sulf paramutation. These findings indicate the involvement of a CMT3/KYP dependent feedback rather than the PolV-dependent pathway leading to RNA directed DNA methylation (RdDM) in the maintenance of paramutation
Genomic investigations of unexplained acute hepatitis in children
Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children
Genomic investigations of unexplained acute hepatitis in children
Funding Information: UKHSA funded the metagenomics and HAdV sequencing. We thank A. Nathwani for helpful discussions. We acknowledge the considerable contribution from the GOSH microbiology laboratory. We thank the medical students who contributed to the DIAMOND consortium. All research at GOSH and UCL GOSH Institute of Child Health is made possible by the NIHR GOSH Biomedical Research Centre. The views expressed are those of the authors and not necessarily those of the NHS, the National Institute for Health Research (NIHR), the UKRI or the Department of Health and Social Care. The work was part funded by the NIHR Blood and Transplant Research Unit in Genomics to Enhance Microbiology Screening (GEMS), the National Institute for Health and Care Research (CO-CIN-01) or jointly by NIHR and UK Research and Innovation (CV220-169, MC_PC_19059). S. Morfopoulou is funded by a W.T. Henry Wellcome fellowship (206478/Z/17/Z). S.B. and O.E.T.M. are funded by the NIHR Blood and Transplant Research Unit (GEMS). M.M.M. and M.L. are supported in part by the NIHR Biomedical Research Centre of Imperial College NHS Trust. J.B. receives NIHR Senior Investigator Funding. M.N. and J.B. are supported by the Wellcome Trust (207511/Z/17/Z and 203268/Z/16/Z). M.N., J.B. and G.P. are supported by the NIHR University College London Hospitals Biomedical Research Centre. P. Simmonds is supported by the NIHR (NIHR203338). T.S.J. is grateful for funding from the Brain Tumour Charity, Children with Cancer UK, GOSH Children’s Charity, Olivia Hodson Cancer Fund, Cancer Research UK and the NIHR. DIAMONDS is funded by the European Union (Horizon 2020; grant 848196). PERFORM was funded by the European Union (Horizon 2020; grant 668303). Publisher Copyright: © 2023, The Author(s).Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.publishersversionPeer reviewe
Evaluating metagenomics and targeted approaches for diagnosis and surveillance of viruses
: Background : Metagenomics is a powerful approach for the detection of unknown and novel pathogens. Workflows based on Illumina short-read sequencing are becoming established in diagnostic laboratories. However, high sequencing depth requirements, long turnaround times, and limited sensitivity hinder broader adoption. We investigated whether we could overcome these limitations using protocols based on untargeted sequencing with Oxford Nanopore Technologies (ONT), which offers real-time data acquisition and analysis, or a targeted panel approach, which allows the selective sequencing of known pathogens and could improve sensitivity. Methods: We evaluated detection of viruses with readily available untargeted metagenomic workflows using Illumina and ONT, and an Illumina-based enrichment approach using the Twist Bioscience Comprehensive Viral Research Panel (CVRP), which targets 3153 viruses. We tested samples consisting of a dilution series of a six-virus mock community in a human DNA/RNA background, designed to resemble clinical specimens with low microbial abundance and high host content. Protocols were designed to retain the host transcriptome, since this could help confirm the absence of infectious agents. We further compared the performance of commonly used taxonomic classifiers. Results: Capture with the Twist CVRP increased sensitivity by at least 10–100-fold over untargeted sequencing, making it suitable for the detection of low viral loads (60 genome copies per ml (gc/ml)), but additional methods may be needed in a diagnostic setting to detect untargeted organisms. While untargeted ONT had good sensitivity at high viral loads (60,000 gc/ml), at lower viral loads (600–6000 gc/ml), longer and more costly sequencing runs would be required to achieve sensitivities comparable to the untargeted Illumina protocol. Untargeted ONT provided better specificity than untargeted Illumina sequencing. However, the application of robust thresholds standardized results between taxonomic classifiers. Host gene expression analysis is optimal with untargeted Illumina sequencing but possible with both the CVRP and ONT. Conclusions: Metagenomics has the potential to become standard-of-care in diagnostics and is a powerful tool for the discovery of emerging pathogens. Untargeted Illumina and ONT metagenomics and capture with the Twist CVRP have different advantages with respect to sensitivity, specificity, turnaround time and cost, and the optimal method will depend on the clinical context
Genomic investigations of unexplained acute hepatitis in children
Since its first identification in Scotland, over 1000 cases of unexplained pediatric hepatitis in children have been reported worldwide, including 278 cases in the UK. Here we report investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator subjects, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in liver, blood, plasma or stool from 27/28 cases. We found low levels of Adenovirus (HAdV) and Human Herpesvirus 6B (HHV-6B), in 23/31 and 16/23 respectively of the cases tested. In contrast, AAV2 was infrequently detected at low titre in blood or liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T-cells and B-lineage cells. Proteomic comparison of liver tissue from cases and healthy controls, identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and in severe cases HHV-6B, may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children
Genomic investigations of unexplained acute hepatitis in children
Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.</p
Genomic investigations of unexplained acute hepatitis in children
Since its first identification in Scotland, over 1000 cases of unexplained pediatric hepatitis in children have been reported worldwide, including 278 cases in the UK 1. Here we report investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator subjects, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in liver, blood, plasma or stool from 27/28 cases. We found low levels of Adenovirus (HAdV) and Human Herpesvirus 6B (HHV-6B), in 23/31 and 16/23 respectively of the cases tested. In contrast, AAV2 was infrequently detected at low titre in blood or liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T-cells and B-lineage cells. Proteomic comparison of liver tissue from cases and healthy controls, identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and in severe cases HHV-6B, may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children
Genomic investigations of unexplained acute hepatitis in children
Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children
Bioinformatics methods for diagnosis and surveillance of viruses in blood and tissue
Clinical metagenomic sequencing, the analysis of the total genetic material from patient samples, is becoming increasingly widely used for the diagnosis and surveillance of infectious diseases. Its ability to detect any microbe makes it suitable for the detection of unexpected and novel pathogens, as well as providing clinically relevant genome sequence data. Bioinformatics analysis of metagenomics data remains complex, with a wide variety of methods currently in use clinically and challenges in distinguishing true pathogens from contaminants.
I used metagenomics to investigate the mechanism of the 2022 outbreak of hepatitis of unknown origin in children. Following the identification of adeno-associated virus 2 (AAV2) in samples from outbreak patients, I used long-read metagenomic sequencing to identify complex concatemeric structures in the AAV2 genome, possibly consistent with replication by both adenoviruses and herpesviruses. I then used similar methods to investigate hepatitis resulting from gene therapy with adeno-associated virus vectors, identifying elements of the gene therapy manufacturing plasmids within patient liver and complex structures in the vector genome.
Our investigations into AAV-related hepatitis suggested potential areas of development for our metagenomics protocols. We compared our existing method with protocols using Oxford Nanopore Technologies (ONT) sequencing to decrease turnaround times and costs and hybridization-capture approaches to improve sensitivity for viruses. I evaluated a range of tools for analysis of these datasets and developed an automated method that reduced false positive identifications across multiple tools. I then co-developed and tested a novel method of hybridization capture with ONT sequencing. This method allowed detection of high-copy number viruses within an hour of sequencing and improved genome coverage compared to untargeted approaches
