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Genomic investigations of unexplained 
acute hepatitis in children

Since its first identification in Scotland, over 1,000 cases of unexplained paediatric 
hepatitis in children have been reported worldwide, including 278 cases in the UK1. 
Here we report an investigation of 38 cases, 66 age-matched immunocompetent 
controls and 21 immunocompromised comparator participants, using a combination 
of genomic, transcriptomic, proteomic a nd i mm un oh is to ch emical m    e  t   h o  ds.  
We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, 
plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and 
human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases 
tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the 
liver from control children with HAdV, even when profoundly immunosuppressed. 
AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. 
Histological analyses of explanted livers showed enrichment for T cells and B lineage 
cells. Proteomic comparison of liver tissue from cases and healthy controls identified 
increased expression of HLA class 2, immunoglobulin variable regions and 
complement proteins. HAdV and AAV2 proteins were not detected in the livers. 
Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and  
HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 
replication products aided by HAdV and, in severe cases, HHV-6B may have triggered 
immune-mediated hepatic disease in genetically and immunologically predisposed 
children.

In March 2022, the report of five cases of severe hepatitis of unknown 
aetiology led to the UK Health Security Agency (UKHSA) identifying 
278 cases in total as of 30 September 20221. Cases, defined as acute 
non-A–E hepatitis with serum transaminases of more than 500 IU in 
children under 10 years of age, were found to have been occurring 
since January 20222. In the UK, 196 cases required hospitalization, 69 
were admitted to intensive care and 13 required liver transplantation1. 
Case numbers have declined since April 20223.

UKHSA investigations identified HAdV to be commonly associ-
ated with the unexplained paediatric hepatitis, with 64.7% (156 of 
241) testing positive in one or more samples from whole blood (the 
most sensitive sample type4) or mucosal swabs. HAdVs from the 
blood of 35 of 77 patients were typed as F41. Seven of eight patients 
in England who required liver transplantation tested HAdV positive 
in blood samples, with F41 found in five of five genotyped2. SARS-CoV-2 
infection was detected in 8.9% (15 of 169) of UK and 12.8% (16 of 125)  
of English cases2.

Given the uncertainty around the aetiology of this outbreak, and 
the potential that HAdV-F41, if implicated (Fig. 1a), could be a new or 
recombinant variant, we undertook untargeted metagenomic and 
metatranscriptomic sequencing of liver biopsies from five liver trans-
plant cases and whole blood from five non-transplanted cases (Table 1 
and Fig. 1b). The results were further verified by confirmatory PCRs of 
liver, blood, stool and nasopharyngeal samples from a total of 38 cases 
for which there was sufficient residual material. We compared our 
results with those from 13 healthy children and 52 previously healthy 
children presenting to hospital with other febrile illness, including 

HAdV, hepatitis unrelated to the current outbreak or a critical illness 
requiring admission to the intensive care unit. We also tested blood 
and liver biopsies from 17 profoundly immunosuppressed children 
with hepatitis who were not part of the current outbreak, in whom 
reactivation of latent infections might be expected.

Cases
We received samples from 38 children meeting the case definition 
(Table 1). All cases were less than 10 years of age and 22 of 23 cases 
previously tested were positive by HAdV PCR (Table 2, Extended Data 
Table 1 and Supplementary Table 1). A summary of the samples received 
from these cases and the investigations carried out on them are shown 
in Fig. 1b,c.

Clinical details
Pre-existing conditions, autoimmune, toxic and other infectious causes 
of hepatitis were excluded in 12 transplanted (cases 1–5, 28, 29, 31–34 
and 36) and four non-transplanted (cases 30, 35, 37 and 38) children, 
investigated at two liver transplant units (Supplementary Table 1). The 
12 transplanted cases reported gastrointestinal symptoms (nausea, 
vomiting and diarrhoea) preceding transplant by a median of 20 days 
(range 8–42 days). All 12 transplanted children survived, whereas the 
four children who did not receive liver transplants recovered without 
sequelae or evidence of chronic liver-related conditions. Five of the 
remaining 22 cases referred by Health Security Agencies, for whom 
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this information was available, recovered without sequelae (Table 1 
and Supplementary Table 1).

Metagenomic sequencing
We performed metagenomic and metatranscriptomic sequencing on 
samples of frozen explanted liver tissue from five cases who received 
liver transplants (median age of 3 years) and six blood samples from 
five non-transplanted hepatitis cases (median age of 5 years) (Table 1 
and Fig. 1b). The liver samples had uniform and consistently high 
sequencing depth both for DNA sequencing (DNA-seq) and RNA-seq, 
whereas the blood samples had variable sequencing depth particularly 

for RNA-seq (Supplementary Table 2). We detected5 abundant AAV2 
reads in DNA-seq from five of five explanted livers and four of five blood 
samples from non-transplant cases (7–42 and 1.2–42 reads per mil-
lion, respectively) (Table 2). Lower levels of HHV-6B were present in 
DNA-seq of all explanted liver samples (0.09–4 reads per million) but 
not in the six blood samples (Table 2). HAdV was detected (five reads) 
in one blood sample (Table 2).

Evidence of AAV2 replication
Metatranscriptomics revealed AAV2, but not HHV-6B or HAdV, RNA 
reads, in liver and blood samples (0.7–10 and 0–7.8 reads per million, 
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Fig. 1 | HAdV epidemiology and experimental outline. a, HAdV in all  
sample types (epidemiology since January 2022). Source: second-generation 
surveillance system data, that is, laboratory reports to UKHSA of a positive 
HAdV result conducted by a laboratory in England and includes any sample 
type. Dots represent the day of presentation for the 28 of 38 cases for which  
we had data. b, Case and control specimens by source. CMV, cytomegalovirus; 
HLH, haemophagocytic lymphohistiocytosis. c, Tests carried out by specimen 

type. More detail on samples tested and the results can be found in Tables 1  
and 2. Not all tests were carried out on all samples due to lack of material.  
n refers to the total number of cases or controls. The numbers of each sample 
type may not sum to this total because samples of more than one type were 
sometimes taken from the same patient. For details, see Table 1. FFPE, formalin- 
fixed paraffin-embedded; tr, received liver transplant.
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respectively). Mapping liver RNA-seq data to the RefSeq AAV2 genome 
(NC_001401.2) identified high expression of the Cap open read-
ing frame, particularly at the 3′ end of the capsid, suggesting viral  
replication6 (Extended Data Fig. 1a), whereas reverse transcription 
(RT)–PCR of two livers confirmed the presence of AAV2 mRNA from the 
Cap open reading frame (Extended Data Fig. 1c). In the blood samples, 
which had not been treated to preserve RNA, we detected low levels 
of AAV2 RNA reads mapping throughout the genome (Extended Data 
Fig. 1b).

 
Nanopore sequencing of explanted livers
Ligation-based untargeted nanopore sequencing was applied to 
DNA from four of five frozen liver samples. All four samples were 
initially sequenced at a lower depth (average N50 of 8.37 kb). Six to 
sixteen AAV2 reads were obtained from each sample (5.57–22.24 mil-
lion total reads; Supplementary Table 3). Mapping revealed concat-
enation of the 4-kb genome, compatible with active AAV2 replication7. 
We observed alternating and head-to-tail concatemers, which could 

Table 1 | Characteristics of unexplained paediatric hepatitis cases and related specimens

Case ID Sex Liver transplant Sender Specimen 1 ID 1 Specimen 2 ID 2 Specimen 3 ID 3

1 M Yes BCH Liver JBL1

2 M Yes BCH, PHW Liver JBL4 NPA JBN1

3 F Yes BCH Liver JBL3

4 M Yes BCH, UKHSA Liver JBL2 Blood JBB25

5 F Yes BCH Liver JBL5

6 F No UKHSA Blood JBB9 Blood JBB14 Blood JBB16

7 F No UKHSA Blood JBB11 Blood JBB10

8 F No UKHSA Serum JBPL1 Blood JBB13

9 M No UKHSA Blood JBB1

10 M No UKHSA Blood JBB15

11 NA No GRI Blood JBB2

12 M No UKHSA Blood JBB12

13 NA No GRI Blood JBB7

14 NA No GRI Blood JBB8

15 NA No GRI Blood JBB4 Blood JBB3

16 NA No GRI Blood JBB5

17 F No UKHSA Throat swab JBB18 Stool JBB17

18 F No UKHSA Blood JBB19

19 F No UKHSA Blood JBB20 Blood JBB23

20 M No UKHSA Blood JBB21

21 NA No PHW NPA JBB26

22 NA No GRI Stool JBB27

23 NA No GRI Throat swab JBB28 Stool JBB30

24 NA No GRI Stool JBB29

25 NA No NHSL Blood JBB31

26 NA No NHSL Stool JBB32

27 F No UKHSA Blood JBB24

28 M Yes KCH Liver JBL6

29 F Yes KCH Liver JBL7 Liver JBL8

30 F No KCH Liver JBL9

31 F Yes KCH Liver JBL10

32 M Yes KCH Liver JBL11 Serum JBB34

33 F Yes KCH Liver JBL12

34 M Yes KCH Liver JBL13 Serum JBB36

35 F No KCH Liver JBL14 Serum JBB35

36 M Yes KCH Liver JBL15 Serum JBB37

37 F No KCH Serum JBB38

38 M No KCH Serum JBB39

The median age for the cases is 3 years of age (age range: 1–9 years of age). Case 10 was 9 years of age. All other cases were 7 years of age or younger. 
Cases 1–5 underwent liver transplant and had metagenomic next-generation sequencing (mNGS), PCR and viral whole-genome sequencing (WGS) of their specimens. Cases 28, 29, 31–34 and 
36 also underwent liver transplant and had PCR for all three viruses under investigation. BCH sent the liver explant for case 2, PHW the NPA. BCH sent the liver for case 4, UKHSA the blood. 
Cases 6–27, 30, 35, 37 and 38 did not receive a liver transplant. Cases 30 and 35 had liver biopsies. Cases 6–10 had metagenomic next-generation sequencing, PCR and viral WGS on their sam-
ples. Cases 11–22 had PCR for one to two of the viruses under investigation and viral WGS of positive PCRs. Cases 23–27 only had HAdV WGS on their samples and there was no residual material 
for further testing. Cases 31, 36, 38 and 39 had PCR for all three viruses under investigation. 
BCH, Birmingham Children’s Hospital; F, female; GRI, Glasgow Royal Infirmary; KCH, King’s College Hospital; M, male; NA, not applicable; NHSL, NHS Lothian; NPA, nasopharygeal aspirate; 
PHW, Public Health Wales.

https://www.ncbi.nlm.nih.gov/nuccore/NC_001401
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be consistent with both HAdV and human herpesvirus-mediated roll-
ing hairpin and rolling circle replication, respectively8. Two of these 
samples were sequenced more deeply, resulting in 52 and 178 AAV2 
reads in 82.9 and 122 million total (N50 of 4.40–8.52 kb) (Supple-
mentary Table 3). Of the reads in the more deeply sequenced data-
sets, 42–48% comprised randomly linked, truncated and rearranged 
genomes, with few that were intact and of full length (Extended Data 
Fig. 2). The remaining reads were less than 3,000 bp long and may 
represent sections either of monomeric genomes or of more complex 
structures.

Integration analysis
There was some evidence of AAV2 integration by deeper nanopore 
sequencing of explanted livers (Supplementary Table 3); however, 
none of the integration sites was confirmed by Illumina metagen-
omic or targeted AAV2 sequencing. The results are likely to represent 
artefacts of this library preparation method; chimeric reads have 
been described to occur in 1.7–3% of reads9,10. Given the number of 
human reads (72–120 million), we might expect to see this artefact 
occurring most commonly between AAV2 and human than between  
AAV2 reads.

Confirmatory real-time PCR
Where sufficient residual material was available, PCR tests were per-
formed for AAV2 (28 of 38 cases), HAdV (31 of 38 cases) and HHV-6B 
(23 of 38 cases). The results confirmed high levels (cycle threshold 
(Ct) values: 17–21) of AAV2 DNA in all five frozen explanted livers that 
had undergone metagenomics (Table 2 and Fig. 2d), and lower levels 
of HHV-6B and HAdV DNA (Ct values: 27–32 and 37–42, respectively). 
AAV2 DNA was also detected (Ct values: 19–25) in blood samples from 
four of five cases that had undergone metagenomics, whereas HAdV, 
at levels too low to genotype, and HHV-6B were detected in two of four 
and three of four cases, respectively (one case had insufficient material) 
(Table 2). One of the blood metagenomics cases (case 9, JBB1) with insuf-
ficient material to test for HAdV and HHV-6B, tested positive for both 
viruses in the referring laboratory. The AAV2-negative blood sample 
(case 10, JBB15) was also negative for HAdV but positive for HHV-6B 

(Table 2). A further ten of ten blood samples tested from cases were 
positive for HAdV by PCR. Sufficient material was available for AAV2 
PCR in six of these (all positive; Ct values: 20–23) and HHV-6B PCR in 
two (one positive Ct value: 37) (Extended Data Table 1).

AAV2 PCR was positive in nine formalin-fixed paraffin-embedded 
(FFPE) liver samples, including seven from transplanted cases (Ct val-
ues: 23–25) and two from non-transplanted cases (Ct values: 34–36; 
Extended Data Table 1). HHV-6B PCR was positive in six of seven FFPE 
samples (not case 32) from transplanted (Ct values: 30–37) and zero of 
two from non-transplanted (cases 30 and 35) cases, with positive HAdV 
(Ct values: 40–44) in four of nine cases. Three transplanted (cases 32, 
34 and 36) and three non-transplanted (cases 35, 37 and 38) cases had 
serum available for testing. All were AAV2 positive (Ct values: 27–32) and 
HHV-6B negative, with one transplanted case and one non-transplanted 
case testing HAdV positive (Extended Data Table 1).

Together, 27 of 28 cases tested were AAV2 PCR positive, 23 of 31 were 
HAdV positive and 16 of 23 were HHV-6B positive. When results from 
referring laboratories were included, 33 of 38 cases were positive for 
HAdV and 19 of 26 cases were positive for HHV-6B (Table 2 and Extended 
Data Table 1).

Controls and comparators
To better contextualize the findings in cases with unexplained hepatitis, 
we selected control groups of children who were not part of the outbreak.

Blood from immunocompetent children
Whole blood from 65 immunocompetent children matched by age to 
cases (median age of 3.8 years) (Fig. 1b, Extended Data Table 2a and 
Supplementary Table 4) who were healthy, or had HAdV infection, 
hepatitis or critical illness, including requiring critical care, were 
selected from the PERFORM (personalised risk assessment in febrile 
illness to optimise real-life management; www.perform2020.org) and  
DIAMONDS (diagnosis and management of febrile illness using 
RNA personalised molecular signature diagnosis study; www.dia-
monds2020.eu) studies. Both studies recruited children presenting to 
hospital with an acute-onset febrile illness between 2017 and 2020 (PER-
FORM) and July 2020 to October 2021, during the COVID-19 pandemic 

Table 2 | PCR, metagenomics and viral WGS results from cases in which metagenomic sequencing was performed

Case ID Sample ID PCR Ct values Metagenomics reads Viral WGS coverage (10×)

DNA RNA

AAV2 HAdV HHV-6B AAV2 HAdV HHV-6B AAV2 HAdV HHV-6B AAV2 HAdV HHV-6B

Liver

1 JBL1 17 37 29 1,343 0 8 574 0 0 97 − 3

2 JBL4 21 42 32 360 0 8 49 0 0 93 − 2

3 JBL3 20 37 30 1,189 0 4 95 0 0 98 − 2

4 JBL2 20 37 27 1,564 0 203 42 0 0 98 − 94

5 JBL5 21 37 28 266 0 12 F F F − − −

Blood

6a JBB14, JBB16, 
JBB9

24 36 37 151 0 0 77 0 0 95 35.5 −

7 JBB10, JBB11 21 36 37 103 0 0 F F F 49 F −

8 JBPL1, JBB13 25 P/N −/N 277 0 0 165 0 0 94 F −

9 JBB1 19 P/− P/− 1,936 5 0 0 0 0 94 F −

10 JBB15 −/N N/N 37 0 0 0 F F F − F −

Where two results are shown, the first refers to the referring laboratory and the second to GOSH. Where there was a discrepancy, the positive result is shown. Where there is more than one 
sample for a single patient, Ct values represent the mean across the samples that were tested. De novo assembly of unclassified metagenomics reads was unremarkable. −, not tested (at GOSH 
due to insufficient residual material); F, failed; N, negative PCR result; P, positive PCR result in referring laboratory. 
aFor metagenomics reads, the result of combining the datasets from two blood samples from the same case.

http://www.perform2020.org
http://www.diamonds2020.eu
http://www.diamonds2020.eu
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(DIAMONDS) (Supplementary Table 4). Of the PERFORM–DIAMONDS 
control whole-blood samples, 6 of 65 (9.2%) were AAV2 PCR positive 
(Supplementary Table 5), compared with 10 of 11 (91%) whole-blood 
samples from cases (Fig. 2a; P = 8.466 × 10−8, Fisher’s exact test). AAV2 
DNA levels were significantly higher in whole-blood samples from 
cases than from controls (Fig. 2e; P = 2.747 × 10−11, Mann–Whitney test).

One participant with an HAdV-F41-positive blood sample, originally 
thought to have unexplained paediatric hepatitis, was later found to 
have a previous condition that explained the hepatitis and was therefore 
reclassified as a control (referred to as ‘reclassified control’ or CONB40) 
(Supplementary Table 5). This blood sample was negative for AAV2 by 
PCR (Supplementary Table 5).
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Fig. 2 | Proportion of positive cases and viral loads (Ct values) for cases  
and controls. a, Proportion of samples positive for AAV2. b, Proportion of 
samples positive for HAdV. c, Proportion of samples positive for HHV-6.  
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comparators. g, HAdV, AAV2 and HHV-6 levels in frozen liver tissue from cases 
and immunocompromised comparators. In the box plots, the bold middle line 
represents the median and the upper and lower horizontal lines represent the 

upper (75th percentile) and lower (25th percentile) quartiles, respectively.  
The whiskers show maximum and minimum values. Each point represents  
one case or control. n Refers to the number of cases or controls. Where more 
than one sample for a case was tested, the midpoint of the Ct was plotted.  
All repeat tests had values if less than 2 Ct values apart, that is, within the limits 
of methodological error. The upper dashed line marked LLP indicates the LLP 
threshold (Ct = 38). Points below the second dashed line represent samples 
below the limit of PCR detection (Ct = 45).  Wilcoxon non-parametric rank  
sum tests were conducted for e and g and a Kruskal–Wallis test followed by 
pairwise Wilcoxon tests with a Benjamini–Hochberg correction for multiple 
comparisons were used for d and f. All tests were two-tailed. Numbers show the 
P value compared with cases. ND, not determined (negative PCR result); NS, not 
significant.
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Liver from immunocompromised children
Frozen liver biopsy material from four immunocompromised children 
(median age of 10 years) (CONL1–4) who had been investigated for 
other forms of hepatitis was also tested (Fig. 1b and Extended Data 
Table 2b). In three children, liver enzyme levels were raised (Supplemen-
tary Table 6); no results were available for CONL4. AAV2 was detected 
in CONL3 (Ct value: 39) and HHV-6B was detected in CONL2 (Ct value: 
34), whereas HAdV was negative (Fig. 2d and Supplementary Table 5).

Blood from immunocompromised comparators
We also tested immunocompromised children who are more likely 
to reactivate latent viruses. Whole-blood samples from 17 immuno-
compromised children (median age of 1 year) with raised levels of liver 
transaminases (AST/ALT of more than 500 IU) and viraemia (HAdV 
or cytomegalovirus), all sampled in 2022 (Fig. 1b), were tested for 
AAV2, HHV-6B and HAdV (Extended Data Table 2b and Supplementary 
Table 5). The majority had received human stem cell or solid organ 

transplants, and none was linked to the recent hepatitis outbreak 
(Extended Data Table 2b). Five of 15 (33%) whole-blood samples were 
positive for HHV-6B, whereas 6 of 17 (35%) were positive for AAV2, sig-
nificantly fewer than in cases (P = 0.005957, Fisher’s exact test) and at 
significantly lower Ct levels (P = 6.517 × 10−5, Mann–Whitney test) (Fig. 2 
and Supplementary Table 5). One HAdV-positive and AAV2-positive 
immunocompromised comparator (CONB23) was also positive for 
HHV-6B (Supplementary Table 5).

Four of the six AAV2-positive children from the PERFORM– 
DIAMONDS cohort (Fig. 2a and Supplementary Table 5) and all six of 
the AAV2-positive immunocompromised children (Fig. 2a and Sup-
plementary Table 5) were also HAdV positive.

Viral whole-genome sequencing
One full HAdV-F41 genome sequence from the stool of one case 
(OP174926, case 22) (Supplementary Table 7) clustered phylogeneti-
cally with the HAdV-F41 sequence obtained from the reclassified control 
(CONB40) and with other HAdV-F41 sequences collected between 
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Fig. 3 | Phylogenetic trees for HAdV, AAV2 and HHV-6B. Maximum likelihood 
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2015 and 2022, including 23 contemporaneous stool samples from 
children without the unexplained paediatric hepatitis (Figs. 1c and 3a).  
Sequencing and k-mer analysis11 of HAdV from 13 cases with partial 
sequences identified the genotype HAdV-F41 in 12 cases (Supple-
mentary Tables 7 and 8). The partial sequences showed most simi-
larity to the control sequence OP047699 (Supplementary Table 8), 
mapping across the entire viral genome, thus further excluding a  
recombinant virus.

Single-nucleotide polymorphisms were largely shared between 
the single HAdV-positive stool from a case (OP174926) and control 
whole-genome sequences (Extended Data Fig. 3a). Given reported 
mutation rates for HAdV-F41 and other adenoviruses12,13, any differ-
ences are likely to have arisen before the outbreak. No new or unique 
amino acid substitutions were noted in HAdV sequences from cases 
with only two substitutions overall (Extended Data Fig. 2d) and none 
in proteins critical for AAV2 replication.

AAV2 sequences from 15 cases, including five from the explanted liv-
ers and ten from whole blood from non-transplanted cases, clustered 
phylogenetically with control AAV2 sequences obtained from four 
immunocompromised HAdV-positive children with elevated levels 
of ALT in the comparator group (Extended Data Table 2b) and two 
healthy children with recent HAdV-F41 diarrhoea (Fig. 3b and Sup-
plementary Table 9). The degree of diversity and lack of a unique com-
mon ancestor between case AAV2 genomes suggest that these are not 
specific to the hepatitis outbreak, but instead reflect the current viral 
diversity of the general population. Although comparison of the AAV2 
sequences showed no difference between cases and controls, con-
temporary AAV2 sequences showed changes in the capsid compared 
with historic AAV2 (Extended Data Fig. 3c). None of these changes was 
shared with the hepatotropic AAV7 and AAV8 viruses (Extended Data 
Fig. 3b). The majority of the contemporary AAV2 genomes in cases 
and controls (20 of 21) contained a stop codon in the X gene, which 
is involved in viral replication14, whereas historic AAV2 genomes con-
tained this less frequently (11 of 35). The significance, if any, of this is  
currently unknown.

Although mean read depths for four HHV-6B genomes recovered 
from explanted livers were low (×5–10) (Supplementary Table 12), phy-
logeny (Fig. 3c) confirmed that all were different.

Transduction of AAV2 capsid mutants
Using a recombinant AAV2 (rAAV2) vector with a VP1 sequence 
(Extended Data Fig. 4a) containing the consensus amino acid sequence 
from AAV2 cases (AAV2Hepcase) (Extended Data Fig. 3b), we generated 
functional rAAV particles that transduced Huh-7 cells with compa-
rable efficacy to both canonical AAV2 and the synthetic liver-tropic 
LK03 AAV vector15. Unlike canonical AAV2, the AAV2Hepcase capsid, 
which contains mutations (R585S and R588T) that potentially affect the 
heparin sulfate proteoglycan (HSPG)-binding domain, was unaffected 
by heparin competition, a feature that is associated with increased 
hepatotropism16,17 (Extended Data Fig. 4b,c).

Histology and immunohistochemistry
Histological examination of the 12 liver explants and two liver biop-
sies showed nonspecific features of acute hepatitis with ballooning 
hepatocytes, disrupted liver architecture with varying degrees of 
perivenular, bridging or pan-acinar necrosis. There was no evidence 
of fibrosis suggestive of an underlying chronic liver disease. The 
appearances were similar to historic cases of seronegative hepatitis 
of unknown cause in children. There were no typical histological fea-
tures of autoimmune hepatitis, notably no evidence of portal-based 
plasma cell-rich infiltrates. A cellular infiltrate was present in all 
cases, which on staining appeared to be predominantly of CD8+ 
T cells but also included CD20+ B cells. More widespread staining 

with the CD79a pan-B cell lineage, which also identifies plasma 
cells, was also observed (Extended Data Fig. 5). Macrophage lineage 
cells showed some C4d complement staining, whereas staining for 
immunoglobulins was nonspecific with disruption of the normal 
canalicular staining seen in controls due to the architectural col-
lapse. MHC class I and class II staining, although increased in cases, 
was nonspecific and associated with sinusoid-containing blood 
cells and necrotic tissue (Extended Data Fig. 6a). No viral inclusions 
were observed and there were no features suggestive of direct viral  
cytopathic effect.

Immunohistochemistry was negative for adenovirus. Staining of 
the five explanted livers with AAV2 antibodies demonstrated evi-
dence of nonspecific ingested debris but not the nuclear staining 
seen in the positive AAV2-infected cell lines and infected mouse tis-
sue (Extended Data Fig. 6b). All five liver explants showed positive 
staining of macrophage-derived cells with antibody to HHV-6B, with no 
staining of negative control serial sections (Extended Data Fig. 6b). No 
specific HHV-6B staining was observed in 13 control liver biopsies from 
patients (including three children less than 18 years of age) with other 
viral hepatitis, toxic liver necrosis, autoimmune and other hepatitis, 
and normal liver. The control set was also negative for HAdV and AAV2 
by immunohistochemistry.

Liver sections were morphologically suboptimal for electron micros-
copy, but no viral particles were identified in hepatocytes, blood vessel 
endothelial cells and Kupffer cells.

Transcriptomic analysis
We quantified functional cytokine activity by expression of inde-
pendently derived cytokine-inducible transcriptional signatures of 
cell-mediated immunity (Supplementary Table 11) in bulk genome-wide 
transcriptional profiles from four of the frozen explanted livers. Results 
were compared with published data from normal adult livers (n = 10) 
and adult hepatitis B-associated acute liver failure (n = 17) (GSE96851)18. 
Data from the unexplained hepatitis cases revealed increased expres-
sion of diverse cytokines and pathways compared with normal liver. 
These pathways included prototypic cytokines associated with T cell 
responses, including IFNγ, IL-2, CD40LG, IL-4, IL-5, IL-7, IL-13 and IL-15 
(Fig. 4a and Supplementary Table 12), as well as some evidence of innate 
immune type I interferon responses. Many of these responses showed 
substantially greater activity in unexplained hepatitis than in fulminant 
hepatitis B virus disease. The most striking enrichment was for TNF 
expression, and included other canonical pro-inflammatory cytokines 
including IL-1 and IL-6 (Extended Data Fig. 7). These data are consistent 
with an inflammatory process involving multiple pathways.

Proteomics
Proteomic analysis of the five frozen explanted livers did not detect 
AAV2 or HAdV proteins. Expression of HHV-6B U4, a protein of unknown 
function, was found in four of five cases; U43, part of the helicase pri-
mase complex, was found in two of five cases; and U84, a homologue 
of cytomegalovirus UL117, implicated in HHV-6B nuclear replication, 
was found in two of five cases (Extended Data Fig. 8).

The human proteome from the five frozen liver explants was com-
pared with publicly available data from seven control ‘normal’ livers, 
taken from two different studies19,20. Both protein and peptide analyses 
(Fig. 4b,c and Supplementary Tables 13 and 14) found increased expres-
sion in unexplained hepatitis cases of HLA class II proteins and peptides 
(for example, HLADRB1 and HLADRB4), multiple peptides from variable 
regions of the heavy and light chains of immunoglobulin, complement 
proteins (such as C1q) and intracellular and extracellular released pro-
teins from neutrophils and macrophages (MMP8 and MPO).

There was no evidence of HAdV, AAV2 or HHV-6B in any of the con-
trol livers.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96851
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Discussion
Despite reports implicating HAdV-F41 as causing the recent outbreak of 
unexplained paediatric hepatitis, we found very low levels of HAdV DNA, 
no proteins, inclusions or viral particles, including in explanted liver 
tissue from affected cases and no evidence of a change in the virus. By 
contrast, metagenomic and PCR analysis of liver tissue and blood identi-
fied high levels of DNA from AAV2, a member of the Dependoparvovirus 
genus, which has not been previously associated with clinical disease, 
in 27 of 28 cases. Replication of AAV2 requires co-infection with a helper 
virus, such as HAdV, herpesviruses or papillomavirus21, and can also be 
triggered in the laboratory by cellular damage22, raising the possibility 
that the AAV2 detected was a bystander of previous HAdV-F41 infection 
and/or liver damage. Against this, we found little or no AAV2 in blood 
from age-matched, immunocompetent children including those with 
HAdV infection, hepatitis or critical illness (Fig. 2d). AAV2 has been 
reported to establish latency in the liver23; however, even in critically 
ill immunosuppressed children with hepatitis in whom reactivation 
might occur, we detected AAV2 infrequently and at significantly lower 
levels in the blood or in liver biopsies (Fig. 2d,g).

RNA transcriptomic and real-time PCR data from explanted livers 
point to active AAV2 infection, although we did not detect AAV2 pro-
teins by immunohistochemistry (Extended Data Fig. 6b) or proteom-
ics (Extended Data Fig. 8) or any viral particles. The abundant AAV2 
genomes in the explanted liver are concatenated with many complex 
and abnormal configurations. AAV genome concatenation may occur 
during AAV2 replication8, whereas abnormal AAV2 DNA complexes 
and rearrangements have been observed in the liver following AAV 
gene therapy7. Hepatitis following AAV gene therapy has been well 
described24–26, with deaths occurring, albeit rarely27. The pattern of com-
plexes typify both HAdV and herpesvirus (including HHV-6B)-mediated 
AAV2 DNA replication6. The presence of HHV-6B DNA in 11 of 12 
explanted livers, but not in livers (0 of 2) of non-transplanted chil-
dren, or control livers as well as the expression, in 5 of 5 cases tested, 
of HHV-6B proteins, including U43, a homologue of the HSV1 helicase 
primase UL52, which is known to aid AAV2 replication, highlight a 
possible role for HHV-6B as well as HAdV in the pathogenesis of AAV2 
hepatitis, particularly in severe cases. Although AAV2 is also capable 
of chromosomal integration28–30, we found little evidence of this by 
long read sequencing, computational analysis of metagenomics data 
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Fig. 4 | Transcriptomic and proteomic analysis of case liver samples. 
Transcriptomic analysis was conducted for the five frozen case liver  
samples from transplanted patients. a, Expressions of cytokine-inducible 
transcriptional modules in normal liver, and AAV2-associated (n = 4) or HBV- 
associated (n = 17) hepatitis requiring transplantation are shown as delta Z 
scores for the expression of each module, reflecting the difference from the 
average score from normal liver (n = 10) datasets, all from different patients. 
Each point represents the score form a single dataset or sample. b,c, Volcano 
plots of differentially expressed proteins (b) and peptides (c). The volcano 

plots illustrate fold changes and corresponding P values for the comparison 
between five liver explants from five patients and seven control healthy livers 
from seven controls. Each dot represents a protein or peptide. The P values 
were calculated by applying two-tailed empirical Bayes moderated t-statistics 
on protein-wise or peptide-wise linear models. Proteins (b) and peptides  
(c) differentially expressed (absolute log2(fold change) > 6 and P < 1 × 10−7) are 
coloured red (upregulated) and blue (downregulated). The P values illustrated 
here are not adjusted for multiple comparisons. Full tables can be found in 
Supplementary Tables 12–14.
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or examination of unmapped reads, although further confirmatory 
studies may be required.

Although the pathogenesis of unexplained paediatric hepatitis and 
the role of AAV2 remain to be determined, our results point strongly 
to an immune-mediated process. Transcriptomic and proteomic data 
from the five explant livers identified significant immune dysregulation 
involving genes and proteins that are strongly associated with activa-
tion of B cells and T cells, neutrophils and macrophages as well as innate 
pathways. The findings are supported by immunohistochemical stain-
ing showing infiltration into liver tissue of CD8+, B cell and B cell lineage 
cells. Upregulation of canonical pro-inflammatory cytokines including 
lL-15, which has also been seen in a mouse model of AAV hepatitis31, IL-4 
and TNF occurred at levels greater even than are seen in fulminant liver 
failure following infection with hepatitis B virus. Increased levels in the 
same immunoglobulin variable region peptides and corresponding 
proteins from both immunoglobulin heavy and light chains across all 
five livers point to specific antibody involvement32. HLA-DRB1*04:01 
(12 of 13 cases tested) (Supplementary Table 1) among children in our 
study supports the same genetic predisposition as mooted in a paral-
lel study conducted in Scotland33.

An immune-mediated process is consistent with studies of hepatitis 
following AAV gene therapy, in which raised AAV2 IgG and capsid spe-
cific cytotoxic T lymphocytes are observed in the affected patients; 
however, whether these directly mediate hepatitis remains unclear26,34. 
Although we did not find that AAV2 sequences in cases differed from 
those in AAV2 occurring as co-infections in HAdV-F41-positive stool 
collected from control children during the contemporary HAdV-F41 
gastroenteritis outbreak (Fig. 3b), rAAV capsid expressing a consensus 
capsid sequence from the unexplained hepatitis cases (AAV2Hepcase) 
showed reduced HSPG dependency, compared with canonical AAV2 
(Extended Data Fig. 4), while retaining hepatocyte transduction abil-
ity. This points to likely greater in vivo hepatotropism of currently 
circulating AAV2 than has hitherto been assumed from data on canoni-
cal AAV2 (ref. 17). Another member of the parvovirus family, equine 
parvovirus-hepatitis, has also been associated with acute hepatitis in 
horses (Theiler’s disease)35.

There are several limitations to our study. Although other known 
infectious, autoimmune, toxic and metabolic aetiologies3 have been 
excluded including by other studies36,37, the number of cases inves-
tigated here is small, the study is retrospective, the immunocom-
promised controls were not perfectly age-matched, and only one 
immunocompetent and 17 immunocompromised controls were sam-
pled during exactly the same period as the outbreak. Age-matched, 
immunocompetent controls contemporaneous with the outbreak 
from the DIAMONDS study, although few in number, were however 
found to be AAV2 negative in a separate study carried out in Scotland33.

Finally, our data alone are not sufficient on their own to rule out 
a contribution from SARS-CoV-2 Omicron, the appearance of which 
preceded the outbreak of unexplained hepatitis (Supplementary 
Table 1). We did not detect SARS-CoV-2 metagenomically even in three 
participants who tested positive on admission. Moreover, although 
seropositivity was higher in our cases (15 of 20) than in controls (3 of 
10), this was not the case for another UK cohort36 (38%) or in prelimi-
nary data from a UKHSA case–control study3, which showed similar 
SARS-CoV-2 antibody prevalence between unexplained hepatitis cases 
and population controls (less than 5 years of age: 60.5% versus 46.3%, 
respectively; 5–10 years of age: 66.7% versus 69.6%, respectively). In line 
with UK national recommendations at the time, none of the children 
had received a COVID vaccine.

Although we found little evidence for SARS-CoV-2 directly causing 
the hepatitis outbreak, we cannot exclude the effect of the COVID-19 
pandemic on child mixing and infection patterns. The contemporane-
ous development of unexplained paediatric hepatitis with a national 
outbreak of HAdV-F41 (ref. 2) and the finding of HAdV-F41 in many cases 
suggest that the two are linked. Enteric HAdV infection is most common 

in those younger than 5 years of age2, and infection is influenced by 
mixing and hygiene38. Few cases of HAdV-F41 occurred between 2020 
and 2022 and no major outbreaks were recorded2. The current HAdV 
outbreak followed relaxation of restrictions due to the pandemic and 
represented one of many infections, including other enteric pathogens 
that occurred in UK children following return to normal mixing39. Under 
normal circumstances, the levels of AAV2 antibodies are high at birth, 
subsequently declining to reach their lowest point at 7–11 months of 
age, increasing thereafter through childhood and adolescence40. AAV2 
is known to spread with respiratory HAdVs, infections that declined 
during the COVID-19 pandemic, and has not been detected by us in over 
30 SARS-CoV-2-positive nasopharyngeal aspirates (data not shown). 
We also found AAV2 DNA to be present in HAdV-F41-positive stool from 
both cases and controls (Supplementary Table 5). With loss of child 
mixing during the COVID-19 pandemic, reduced spread of common 
respiratory and enteric viral infections and no evidence of AAV2 in 
SARS-CoV-2-positive nasopharyngeal swabs, it is likely that immu-
nity to both HAdV-F41 and AAV2 declined sharply in the age group 
affected by this unexplained hepatitis outbreak. Pre-existing antibody 
is known to reduce levels of AAV DNA in the liver of non-human pri-
mates following infusion of AAV gene therapy vectors41. The possibility 
that, in the absence of protective immunity, excessive replication of 
HAdV-F41 and AAV2 with accumulation of AAV2 DNA in the liver led to 
immune-mediated hepatic disease in genetically predisposed individu-
als needs further investigation. Evaluation of drugs that inhibit TNF 
and other cytokines massively elevated in this condition may identify 
important therapeutic options for future cases.
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Methods

Ethics
Metagenomic analysis and HAdV sequencing were carried out by the 
routine diagnostic service at Great Ormond Street Hospital (GOSH). Addi-
tional PCRs, immunohistochemistry and proteomics on samples received 
for metagenomics are part of the GOSH protocol for confirmation of 
new and unexpected pathogens. The use for research of anonymized 
laboratory request data, diagnostic results and residual material from 
any specimen received in the GOSH diagnostic laboratory, including 
all cases received from Birmingham’s Children Hospital UKHSA, Public 
Health Wales, Public Health Scotland as well as non-case samples from 
UKHSA, Public Health Scotland and GOSH research was approved by UCL 
Partners Pathogen Biobank under ethical approval granted by the NRES 
Committee London-Fulham (REC reference: 17/LO/1530).

Children undergoing liver transplant were consented for additional 
research under the International Severe Acute Respiratory and Emerg-
ing Infection Consortium (ISARIC) WHO Clinical Characterisation Pro-
tocol UK (CCP-UK) (ISRCTN 66726260) (RQ3001-0591, RQ301-0594, 
RQ301-0596, RQ301-0597 and RQ301-0598). Ethical approval for the 
ISARIC CCP-UK study was given by the South Central–Oxford Research 
Ethics Committee in England (13/SC/0149), the Scotland A Research 
Ethics Committee (20/SS/0028) and the WHO Ethics Review Commit-
tee (RPC571 and RPC572).

The UKHSA has legal permission, provided by regulation 3 of The Health 
Service (Control of Patient Information) Regulations 2002, to process 
patient confidential information for national surveillance of communi-
cable diseases and, as such, individual patient consent is not required.

Control participants from the EU Horizon 2020 research and innova-
tion program DIAMONDS–PERFORM (grant agreement nos. 668303 
and 848196) were recruited according to the approved enrolment 
procedures of each study, and with the informed consent of parents 
or guardians: DIAMONDS (London-Dulwich Research Ethics Commit-
tee: 20/HRA/1714) and PERFORM (London-Central Research Ethics 
Committee: 16/LO/1684).

The sample IDs for the cases and controls are anonymized IDs that 
cannot reveal the identity of the study participants and are not known 
to anyone outside the research group, such as the patients or the hos-
pital staff.

Samples
Initial diagnostic testing by metagenomics and PCR was performed at 
GOSH Microbiology and Virology clinical laboratories. Further WGS 
and characterization were performed at UCL.

Cases
Birmingham Children’s Hospital provided us with explanted liver 
tissue from five biopsy sites from five cases, five whole blood 500 µl 
from four cases and serum plasma from one case (Table 1 and Fig. 1b). 
These were used in metagenomics testing (Table 2), followed by HAdV, 
HHV-6 and AAV2 testing by PCR and, depending on the Ct value, WGS 
(Supplementary Tables 7, 9 and 10). We subsequently received 25 addi-
tional specimens from UKHSA, Public Health Wales and Public Health  
Scotland/Edinburgh Royal Infirmary, including 16 additional blood 
samples, four respiratory specimens and five stool samples, for 
HAdV WGS and, depending on residual material, for AAV2 PCR test-
ing followed by sequencing (Tables 1 and 2, Fig. 1b and Supplementary 
Tables 7, 9 and 10). We also received ten FFPE liver biopsy samples and 
six serum samples from 11 cases from King’s College Hospital (Table 1). 
Of these cases, seven had received liver transplants.

Controls from DIAMONDS and PERFORM
PERFORM recruited children from ten EU countries (2016–2020). PER-
FORM was funded by the European Union’s Horizon 2020 programme 
under GA no. 668303.

DIAMONDS is funded by the European Union Horizon 2020 pro-
gramme grant number 848196. Recruitment commenced in 2020 and 
is ongoing. Both studies recruited children presenting with suspected 
infection or inflammation and assigned them to diagnostic groups 
according to a standardized algorithm.

Controls from GOSH for PCR
Blood samples from 17 patients not linked to the non-A–E hepatitis 
outbreak were tested by real-time PCR targeting AAV2 (Extended Data 
Table 2b). These comparators were patients with ALT/AST of more than 
500 and HAdV or cytomegalovirus viraemia. These were purified DNA 
from residual diagnostic specimens received in the GOSH microbiol-
ogy and virology laboratory in the previous year. All residual speci-
mens were stored at −80 °C before testing and pseudo-anonymized 
at the point of processing and analysis. Viraemia was initially detected 
using targeted real-time PCR during routine diagnostic testing with 
UKAS-accredited laboratory-developed assays that conform to 
ISO:15189 standards.

In addition to the blood samples, four residual liver biopsies from 
four control patients referred for investigation of infection were tested 
by AAV2 and HHV-6B PCR. The liver biopsies were submitted to the 
GOSH microbiology laboratory for routine diagnosis by bacterial 
broad-range 16S rRNA gene PCR or metagenomics testing in 2021 and 
2022. Three of four control patients were known to have elevated levels 
of liver enzymes. Two adult frozen liver samples previously tested by 
metagenomics were negative for AAV2 and positive for HHV-6B (Sup-
plementary Table 5).

Controls from UKHSA
We received a blood sample from one patient with elevated levels of 
liver enzymes and HAdV infection. We also received one control stool 
sample from Public Health Scotland/Edinburgh Royal Infirmary and 
22 control stool samples for sequencing.

Controls from King’s College Hospital
A single FFPE liver biopsy control of normal marginal tissue from a 
hepatoblastoma from a child was negative for AAV2 and HAdV, but 
positive for HHV-6B (Ct = 37).

Controls from Queen Mary University of London
We received FFPE liver control samples from ten adults and three chil-
dren (under 18 years of age) with other viral hepatitis, toxic liver necro-
sis, autoimmune and other hepatitis, and normal liver, from Queen 
Mary University of London. PCR gave valid results for samples from 
two children and eight adults, all of which were negative by PCR for 
AAV2 and HHV-6, apart from one adult sample, which was positive for 
HHV-6 at a high Ct value (Supplementary Table 5).

Metagenomic sequencing
Nucleic acid purification. Frozen liver biopsies were infused over-
night at −20 °C with RNAlater-ICE. Up to 20  mg biopsy was lysed with 
1.4-mm ceramic, 0.1-mm silica and 4-mm glass beads, before DNA and 
RNA purification using the Qiagen AllPrep DNA/RNA Mini kit as per 
the manufacturer’s instructions, with a 30 µl elution volume for RNA 
and 50 µl for DNA.

Up to 400 µl whole blood was lysed with 0.5-mm and 0.1-mm glass 
beads before DNA and RNA purification on a Qiagen EZ1 instrument 
with an EZ1 virus mini kit as per the manufacturer’s instructions, with 
a 60 µl elution volume.

For quality assurance, every batch of samples was accompanied by 
a control sample containing feline calicivirus RNA and cowpox DNA, 
which was processed alongside clinical specimens, from nucleic acid 
purification through to sequencing. All specimens and controls were 
spiked with MS2 phage RNA internal control before nucleic acid puri-
fication.
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Library preparation and sequencing. RNA from whole-blood 
samples with an RNA yield of more than 2.5 ng µl−1 and from biop-
sies underwent ribosomal RNA depletion and library preparation 
with KAPA RNA HyperPrep kit with RiboErase, according to the 
manufacturer’s instructions. RNA from whole blood with an RNA 
yield of less than 2.5 ng µl−1 did not undergo rRNA depletion before  
library preparation.

DNA from whole-blood samples with a DNA yield of more than 
1 ng µl−1 and from biopsies underwent depletion of CpG-methylated 
DNA using the NEBNext Microbiome DNA Enrichment Kit, fol-
lowed by library preparation with the NEBNext Ultra II FS DNA 
Library Prep Kit for Illumina, according to manufacturer’s instruc-
tions. DNA from whole blood with a DNA yield of less than 1 ng µl−1 
did not undergo depletion of CpG-methylated DNA before library  
preparation.

Sequencing was performed with a NextSeq High output 150 cycle 
kit with a maximum of 12 libraries pooled per run, including controls.

Metagenomics data analysis
Pre-processing pipeline. An initial quality control step was performed 
by trimming adapters and low-quality ends from the reads (Trim  
Galore!42 0.3.7). Human sequences were then removed using the human 
reference GRCH38 p.9 (Bowtie2 (ref. 43), version 2.4.1) followed by 
removal of low-quality and low-complexity sequences (PrinSeq44, ver-
sion 0.20.3). An additional step of human sequences removal followed 
(megaBLAST45, version 2.9.0). For RNA-seq, rRNA sequences were also 
removed using a similar two-step approach (Bowtie2 and megaBLAST). 
Finally, nucleotide similarity and protein similarity searches were per-
formed (megaBLAST and DIAMOND46 (version 0.9.30), respectively) 
against custom reference databases that consisted of nucleotide and 
protein sequences of the RefSeq collections (downloaded March 2020) 
for viruses, bacteria, fungi, parasites and human.

Taxonomic classification. DNA and RNA sequence data were analysed 
with metaMix5 (version 0.4) nucleotide and protein analysis pipelines.

metaMix resolves metagenomics mixtures using Bayesian mixture 
models and a parallel Markov chain Monte Carlo search of the potential 
species space to infer the most likely species profile.

metaMix considers all reads simultaneously to infer relative abun-
dances and probabilistically assign the reads to the species most likely 
to be present. It uses an ‘unknown’ category to capture the fact that 
some reads cannot be assigned to any species. The resulting metagen-
omic profile includes posterior probabilities of species presence as 
well as Bayes factor for presence versus absence of specific species. 
There are two modes: metaMix-protein, which is optimal for RNA virus 
detection, and metaMix-nucl, which is best for speciation of DNA micro-
organisms. Both modes were used for RNA-seq, whereas metaMix-nucl 
was used for DNA-seq.

For sequence results to be valid, MS2 phage RNA had to be detected 
in every sample and feline calicivirus RNA and cowpox DNA, with no 
additional unexpected organisms, detected in the controls.
Confirmatory mapping of AAV2. The RNA-seq reads were mapped 
to the AAV2 reference genome (NCBI reference sequence NC_001401) 
using Bowtie2, with the –very-sensitive option. Samtools47 (version 1.9) 
and Picard (version 2.26.9; http://broadinstitute.github.io/picard/) 
were used to sort, deduplicate and index the alignments, and to create 
a depth file, which was plotted using a custom script in R.
De novo assembly of unclassified reads. We performed a de novo 
assembly step with metaSPADES48 (v3.15.5), using all the reads with 
no matches to the nucleotide database that we used for our similarity 
search. A search using megaBLAST with the standard nucleotide col-
lection was carried out on all resulting contigs over 1,000 bp in length. 
All of the contigs longer than 1,000 bp matched to human, except two 
that mapped to Torque Teno virus.

Nanopore sequencing. DNA from up to 20 mg of liver was purified 
using the Qiagen DNeasy Blood & Tissue kit as per the manufacturer’s 
instructions. Samples with limited amount of DNA were fragmented to 
an average size of 10 kb using a Megaruptor 3 (Diagenode) to reach an 
optimal molar concentration for library preparation. Quality control 
was perform using a Femto Pulse System (Agilent Technologies) and a 
Qubit fluorometer (Invitrogen). Samples were prepared for Nanopore 
sequencing using the ligation sequencing kit SQK-LSK110. DNA was 
sequenced on a PromethION using R9.4.1 flowcells (Oxford Nanopore 
Technologies). Samples were run for 72 h including a washing and re-
load step after 24 h and 48 h.

All library preparation and sequencing were performed by the UCL 
Long Read Sequencing facility.

Passed reads from Minknow were mapped to the reference AAV2 
genome (NC_001401) using minimap2 (ref. 49) using the default param-
eters. Reads were trimmed of adapters using Porechop v0.2.4 (https://
github.com/rrwick/Porechop/), with the sequences of the adapters 
used added to adapters.py, and using an adapter threshold of 85. 
Reads that also mapped by minimap to the human genome (Ensemble 
GRCh38_v107), which could be ligation artefacts, were excluded from 
further analysis. The passed reads were also classified using Kraken2 
(ref. 50) with the PlusPF database (17 May 2021). The data relating to 
AAV2 reads in Supplementary Table 3 refer to reads that were classi-
fied as AAV2 by both minimap2 and Kraken2 (version 2.0.8-beta), as 
the results from both methods were similar. Four reads across all four 
lower-depth samples were classified as HHV-6B by the EPI2ME WIMP51 
pipeline. No reads were classified as HAdV or HHV-6B by Kraken2 in the 
two higher-depth samples. Alignment dot plots were created for the 
AAV2 reads using redotable (version 1.1)52, with a window size of 20. 
These were manually classified into possible complex and monomeric 
structures.

Integration analysis of Illumina data. We investigated poten-
tial integrations of AAV2 and HHV-6 viruses into the genome us-
ing the Illumina metagenomics data for five liver transplant cases. 
We first processed the pair-end reads (average sequence coverage 
per genome = 5×), quality checking using FastQC53, with barcode 
and adaptor sequence trimmed by TrimGalore (phred-score = 20).  
Potential viral integrations were investigated with Vseq-Toolkit54 
(mode 3 with default settings except for high stringency levels). 
Predicted genomic integrations were visualized with IGV55, requir-
ing at least three reads supporting an integration site, spanning both  
human and viral sequences. Predicted integrations were supported 
by only one read, thus not fulfilling the algorithm criteria. Sequencing 
was performed at a lower depth than optimal for integration analysis, 
but no evidence was found for AAV2 or HHV-6B integration into the  
genomes of cases.

PCR. Real-time PCR targeting a 62-nt region of the AAV2 inverted 
terminal repeat sequence was performed using primers and probes 
previously described56. This assay has been predicted to amplify AAV2 
and AAV6. The Qiagen QuantiNova probe PCR kit (PERFORM and  
DIAMONDS controls) or the Qiagen Quantifast probe PCR kit (all other 
samples) were used. Each 25-µl reaction consisted of 0.1 µM forward 
primer, 0.34 µM reverse primer and 0.1 µM probe with 5 µl template 
DNA.

Real-time PCR targeting a 74-bp region of the HHV-6 DNA polymerase 
gene was performed using primers and probes previously described57 
multiplexed with an internal positive control targeting mouse (mus) 
DNA spiked into each sample during DNA purification, as previously 
described58. In brief, each 25-µl reaction consisted of 0.5 µM of each 
primer, 0.3 µM HHV-6 probe, 0.12 µM of each mus primer, 0.08 µM 
mus probe and 12.5 µl Qiagen Quantifast Fast mastermix with 10 µl 
template DNA.

https://www.ncbi.nlm.nih.gov/nuccore/NC_001401
http://broadinstitute.github.io/picard/
https://www.ncbi.nlm.nih.gov/nuccore/NC_001401
https://github.com/rrwick/Porechop/
https://github.com/rrwick/Porechop/


Real-time PCR targeting a 132-bp region of the HAdV hexon gene 
was performed using primers and probes previously described59 
multiplexed with an internal positive control targeting mouse (mus) 
DNA spiked into each sample during DNA purification, as previously 
described58. In brief, each 25-µl reaction consisted of 0.6 µM of each 
HHV-6 primer, 0.4 µM HHV-6 probe, 0.12 µM of each mus primer, 
0.08 µM mus probe and 12.5 µl Qiagen Quantifast Fast mastermix with 
10 µl template DNA.

PCR cycling for all targets, apart from the controls from the PER-
FORM and DIAMONDS studies, was performed on an ABI 7500 Fast 
thermocycler and consisted of 95 °C for 5 min followed by 45 cycles 
of 95 °C for 30 s and 60 °C for 30 s. For the PERFORM and DIAMONDS 
controls, PCR was performed on a StepOnePlus Real-Time PCR System 
and consisted of 95 °C for 2 min followed by 45 cycles of 95 °C for 5 s 
and 60 °C for 10 s. Each PCR run included a no template control and a 
DNA-positive control for each target.

Neat DNA extracts of the FFPE material were inhibitory to PCR, so 
PCR results shown were performed following a 1 in 10 dilution.

AAV2 quantitative PCR with reverse transcription. RNA samples 
were treated with the Turbo-DNA free kit (Thermo) to remove residual 
genomic DNA. Complementary DNA (cDNA) was synthesized using the 
QuantiTect Reverse Transcription kit. In brief, 12 µl of RNA was mixed 
with 2 µl of genomic DNA Wipeout buffer and incubated at 42 °C for 
2 min and transferred to ice. For reverse transcription, 6 µl mastermix 
was used and incubated at 42 °C for 20 min followed by 3 min at 95 °C.

Real-time PCR targeting a 120-nt region of the AAV2 cap open reading 
frame sequence was performed using primers AAV2_cap _Fw- ATCCTTCG 
ACCACCTTCAGT, AAV2_cap _Rv-GATT CCAGCGTTTGCTGTT and the 
probe AAV2_cap _Pr FAM-ACACAGTAT/ZEN/TCC ACGG GACAGGT-IBFQ. 
This assay has been predicted to amplify AAV2 and AAV6. The Qiagen 
QuantiNova probe PCR kit was used. Each 25-µl reaction consisted of 
0.1 µM forward primer, 0.1 µM reverse primer and 0.2 µM probe with 
2.5 µl template cDNA.

PCR was performed on a StepOnePlus Real-Time PCR System and 
consisted of incubation at 95 °C for 2 min followed by 45 cycles of 95 °C 
for 5 s and 60 °C for 10 s. Each PCR run included a no template control, 
a DNA-positive control and a RNA control from each sample to verify 
efficient removal of genomic DNA.

Immunohistochemistry. All immunohistochemistry was done on FFPE 
tissue cut at a thickness of 3 µm.

Adenovirus. AdV immunohistochemistry was carried out using the 
Ventana Benchmark ULTRA, Optiview Detection Kit, PIER with pro-
tease 1 for 4 min and antibody incubation for 32 min (AdV clone 2/6 
and 20/11, Roche, 760-4870, pre-diluted). The positive control was a 
known HAdV-positive gastrointestinal surgical case.

Preparation of AAV2-positive controls. The plasmid used for transfec-
tion was pAAV2/2 (addgene, plasmid #104963; https://www.addgene.
org/104963/), which expresses the genes encoding Rep/Cap of AAV2. 
This was delivered by tail-vein hydrodynamic injection60 into albino 
C57BL/6 mice (5 mg in 2 ml PBS). Negative controls received PBS alone. 
At 48 h, mice were terminally exsanguinated and perfused by PBS. Livers 
were collected into 10% neutral buffered formalin (CellPath UK). This 
was performed under Home Office License PAD4E6357.

AAV2 immunohistochemistry was carried out with four commercially 
available antibodies:
•	Leica Bond-III, Bond Polymer Refine Detection Kit with DAB Enhancer, 

HIER with Bond Epitope Retrieval Solution 1 (citrate based pH 6) for 
30 min and antibody incubation for 30 min (anti-AAV VP1/VP2/VP3 
clone B1, PROGEN, 690058S, 1:100).

•	Leica Bond-III, Bond Polymer Refine Detection Kit with DAB Enhancer, 
HIER with Bond Epitope Retrieval Solution 1 (citrate based pH 6) for 

40 min and antibody incubation for 30 min (anti-AAV VP1/VP2/VP3 
rabbit polyclonal, OriGene, BP5024, 1:100).

•	Leica Bond-III, Bond Polymer Refine Detection Kit with DAB Enhancer, 
HIER with Bond Epitope Retrieval Solution 1 (citrate based pH 6) for 
40 min and antibody incubation for 30 min (anti-AAV VP1 clone A1, 
OriGene, BM5013, 1:100).

•	Leica Bond-III, Bond Polymer Refine Detection Kit with DAB Enhancer, 
HIER with Bond Epitope Retrieval Solution 1 (citrate based pH 6) for 
40 min and antibody incubation for 30 min (anti-AAV VP1/VP2 clone 
A69, OriGene, BM5014, 1:100).HHV-6 immunohistochemistry strain-
ing was carried out with:

•	Leica Bond-III, Bond Polymer Refine Detection Kit with DAB Enhancer, 
PIER with Bond Enzyme 1 Kit for 10 min and antibody incubation for 
30 min (mouse monoclonal antibody (C3108-103) to HHV-6, ABCAM, 
ab128404, 1:100).
Negative reagent control slides were stained using the same antigen 

retrieval conditions and staining protocol incubation times using only 
BondTM Primary Antibody Diluent #AR9352 for the antibody incuba-
tion.

Electron microscopy. Samples of liver were fixed in 2.5% glutaral-
dehyde in 0.1 M cacodylate buffer followed by secondary fixation in 
1.0% osmium tetroxide. Tissues were dehydrated in graded ethanol, 
transferred to an intermediate reagent, propylene oxide and then in-
filtrated and embedded in Agar 100 epoxy resin. Polymerization was 
undertaken at 60 °C for 48 h. Ultrathin sections of 90 nm were cut using 
a Diatome diamond knife on a Leica UC7 ultramicrotome. Sections were 
transferred to copper grids and stained with alcoholic urynal acetate 
and Reynold’s lead citrate. The samples were examined using a JEOL 
1400 transmission electron microscope. Images were captured on an 
AMT XR80 digital camera.

WGS
Bait design. To produce the capture probes for hybridization, bioti-
nylated RNA oligonucleotides (baits) used in the SureSelectXT proto-
cols for HAdV and HHV-6 WGS were designed in-house using Agilent 
community design baits with part numbers 5191-6711 and 5191-6713, 
respectively. They were synthesized by Agilent Technologies (2021) 
(available through Agilent’s Community Designs programme: SSXT 
CD Pan Adenovirus and SSXT CD Pan HHV-6 and used previously61,62).

Library preparation and sequencing. For WGS of HAdV and HHV-6B, 
DNA (bulked with male human genomic DNA (Promega) if required) was 
sheared using a Covaris E220 focused ultrasonication system (PIP 75, 
duty factor of 10, 1,000 cycles per burst). End-repair, non-templated 
addition of 3′ poly A, adapter ligation, hybridization, PCR (pre-capture 
cycles dependent on DNA input and post-capture cycles dependent 
on viral load) and all post-reaction clean-up steps were performed  
according to either the SureSelectXT Low Input Target Enrichment for 
Illumina Paired-End Multiplexed Sequencing protocol (version A0), 
the SureSelectXT Target Enrichment for Illumina Paired-End Multi-
plexed Sequencing protocol (version C3) or the SureSelectXTHS Target  
Enrichment using the Magnis NGS Prep System protocol (version A0)  
(Agilent Technologies). Quality control steps were performed on the 
4200 TapeStation (Agilent Technologies). Samples were sequenced 
using the Illumina MiSeq platform. Base calling and sample demulti-
plexing were performed as standard for the MiSeq platform, generating 
paired FASTQ files for each sample. A negative control was included 
on each processing run. A targeted enrichment approach was used 
due to the predicted high variability of the HHV-6 and HAdV genomes.

For AAV2 WGS, an AAV2 primer scheme was designed using primal-
scheme63 with 17 AAV2 sequences from NCBI and one AAV2 sequence 
provided by GOSH from metagenomic sequencing of a liver biopsy DNA 
extract as the reference material. These primers amplify 15 overlapping 
400-bp amplicons. Primers were supplied by Merck. Two multiplex 

https://www.addgene.org/104963/
https://www.addgene.org/104963/
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PCRs were prepared using Q5 Hot Start High-Fidelity 2X Master Mix, 
with a 65 °C, 3 min annealing/extension temperature. Pools 1 and 2 
multiplex PCRs were run for 35 cycles. Of each PCR, 10 µl was combined 
and 20 µl nuclease-free water was added. Libraries were prepared either 
manually or on the Agilent Bravo NGS workstation option B, following 
a reduced-scale version of the Illumina DNA protocol as used in the 
CoronaHiT protocol64. Equal volumes of the final libraries were pooled, 
bead purified and sequenced on the Illumina MiSeq. A negative control 
was included on each processing run.

All library preparation and sequencing were performed by UCL 
Genomics.

AAV2 sequence analysis. The raw fastq reads were adapted, trimmed 
and low-quality reads were removed. The reads were mapped to the 
NC_001401 reference sequence and then the amplicon primers regions 
were trimmed using the location provided in a bed file. Consensus 
sequences were then called at a minimum of 10× coverage. The entire 
processing of raw reads to consensus was carried out using the nf-core/ 
viralrecon pipeline (https://nf-co.re/viralrecon/2.4.1; https://doi.
org/10.5281/zenodo.3901628). Basic quality metrics for the samples 
sequenced are in Supplementary Table 9. All samples that gave 10× 
genome coverage over 90% were then used for further phylogenetic 
analysis. Samples were aligned along with known reference strains 
from GenBank using MAFFT65 (version v7.271), and the trees were built 
with IQ-TREE66 (multicore version 1.6.12) with 1,000 rapid bootstraps 
and approximate likelihood-ratio test support. The samples were then 
labelled based on type and provider on the trees (Fig. 3a).

For each AAV2 sample, we aligned the consensus nucleotide sequence 
to the AAV2 reference sequence. From these alignments, the exact 
coordinates of the sample capsid were determined. We then used 
the coordinates to extract the corresponding nucleotide sequence 
and translated it to find the amino acid sequence. Next, we compared 
each sample to the reference to identify amino acid changes. Amino 
acid sequences from AAV capsid sequences were retrieved from Gen-
Bank for AAV1 to AAV12. Amino acid sequences of capsid constructs 
designed to be more hepatotropic were retrieved from refs. 16,67. 
These sequence sets were then aligned to the AAV2 reference sequence 
using MAFFT65. We then compared each construct to the AAV2 ref-
erence to identify amino acid changes present, while retaining the  
AAV2 coordinate set.

HAdV and HHV-6B sequence analysis. Raw data quality control was 
performed using trim-galore (v.0.6.7) on the raw FASTQ files.

For HHV-6B, short reads were mapped with BWA mem68 (0.7.17-r1188) 
using the RefSeq reference NC_000898.

For HAdV, genotyping is performed using AYUKA11 (version 22-111). 
This novel tool is used to confidently assign one or more HAdV geno-
types to a sample of interest, assessing inter-genotype recombination 
if more than one genotype is detected. The results from this screening 
step guide which downstream analyses are performed and which ref-
erence genome (or genomes) is used. If mixed infection is suspected, 
reads are separated using bbsplit (https://sourceforge.net/projects/
bbmap/), and each genotype is analysed independently as normal. If 
recombination is suspected, a more detailed analysis is performed 
using Recombination Detection Program (RDP) and the sample is 
excluded from phylogenetic analysis. After genotyping, the cleaned 
read data are mapped using BWA to the relevant reference sequence 
(or sequences), and SNPs and small insertions and deletions are called 
using bcftool (version1.15.1, https://github.com/samtools/bcftools) and 
a consensus sequence is generated also with bcftools, masking with 
Ns positions that do not have enough read support (15× by default). 
Consensus sequences generated with the pipeline are then concat-
enated to previously sequenced samples and a multiple sequence align-
ment is performed using the G-INS-I algorithm in the MAFFT software 
(MAFFT G-INS-I v7.481). The multiple sequence alignment is then used 

for phylogenetic analysis with IQ-TREE (IQ-TREE 2 2.2.0), using mod-
elfinder and performing 1,000 rapid bootstraps.

Proteomics data generation. Liver explant tissue from cases was homo-
genized in lysis buffer, 100 mM Tris (pH 8.5), 5% sodium dodecyl sulfate, 
5 mM tris(2-carboxyethyl)phosphine and 20 mM chloroacetamide then 
heated at 95 °C for 10 min and sonicated in an ultrasonic bath for another  
10 min. The lysed proteins were quantified with NanoDrop 2000 
(Thermo Fisher Scientific). One-hundred micrograms was precipitated 
with the methanol/chloroform protocol and then protein pellets were 
reconstituted in 100 mM Tris (pH 8.5) and 4% sodium deoxycholate 
(SDC). The proteins were subjected to proteolysis with 1:50 trypsin 
overnight at 37 °C with constant shaking. Digestion was stopped by 
adding 1% trifluoroacetic acid to a final concentration of 0.5%. Precipi-
tated SDC was removed by centrifugation at 10,000g for 5 min, and the 
supernatant containing digested peptides was desalted on an SOLAµ 
HRP (Thermo Fisher Scientific). Of the desalted peptide, 50 µg was 
then fractionated on Vanquish HPLC (Thermo Fisher Scientific) using 
a Acquity BEH C18 column (2.1 × 50 mm with 1.7-µm particles from 
Waters): buffer A was 10 mM ammonium formiate at pH 10, whereas 
buffer B was 80% acetonitrile and the flow was set to 500 µl per minute.  
We used a gradient of 8 min to collect 24 fractions that were then con-
catenated to obtain 12 fractions. These 12 fractions were dried and 
dissolved in 2% formic acid before liquid chromatography–tandem 
mass spectrometry analysis. An estimated total of 2,000 ng from each 
fraction was analysed using an Ultimate3000 high-performance liquid 
chromatography system coupled online to an Eclipse mass spectrom-
eter (Thermo Fisher Scientific). Buffer A consisted of water acidified 
with 0.1% formic acid, whereas buffer B was 80% acetonitrile and 20% 
water with 0.1% formic acid. The peptides were first trapped for 1 min 
at 30 µl per minute with 100% buffer A on a trap (0.3 mm × 5 mm with 
PepMap C18, 5 µm, 100 Å; Thermo Fisher Scientific); after trapping, 
the peptides were separated by a 50-cm analytical column (Acclaim 
PepMap, 3 µm; Thermo Fisher Scientific). The gradient was 9–35% 
buffer B for 103 min at 300 nl per minute. Buffer B was then raised to 
55% in 2 min and increased to 99% for the cleaning step. Peptides were 
ionized using a spray voltage of 2.1 kV and a capillary heated at 280 °C. 
The mass spectrometer was set to acquire full-scan mass spectrometry 
spectra (350:1,400 mass:charge ratio) for a maximum injection time set 
to auto at a mass resolution of 120,000 and an automated gain control 
target value of 100%. For a second, the most intense precursor ions 
were selected for tandem mass spectrometry. Higher energy collisional 
dissocation (HCD) fragmentation was performed in the HCD cell, with 
the readout in the Orbitrap mass analyser at a resolution of 15,000 
(isolation window of 3 Th) and an automated gain control target value 
of 200% with a maximum injection time set to auto and a normalized 
collision energy of 30%. All raw files were analysed by MaxQuant69 v2.1 
software using the integrated Andromeda search engine and searched 
against the Human UniProt Reference Proteome (February release with 
79,057 protein sequences) together with UniProt-reported AAV proteins 
and specific fasta created using EMBOSS Sixpack translating patient’s 
virus genome. MaxQuant was used with the standard parameters with 
only the addition of deamidation (N) as variable modification. Data 
analysis was then carried out with Perseus70 v2.05: proteins reported 
in the file ‘proteinGroups.txt’ were filtered for reverse and potential 
contaminants. Figures were created using Origin pro version 2022b.

Transduction of AAV2 capsid mutants. A transgene sequence con-
taining enhanced green fluorescent protein (eGFP) was packaged into 
rAAV2 particles to track their expression in transduced cells, compared 
with rAAV capsids derived from canonical AAV2, AAV9 and a synthetic 
liver-tropic AAV vector called LK03 (ref. 15).

rAAV vector particles were delivered to Huh-7 hepatocytes at a multi-
plicity of infection of 100,000 vector genomes per cell before analysing 
eGFP expression by flow cytometry 72 h later.

https://www.ncbi.nlm.nih.gov/nuccore/NC_001401
https://nf-co.re/viralrecon/2.4.1
https://doi.org/10.5281/zenodo.3901628
https://doi.org/10.5281/zenodo.3901628
https://www.ncbi.nlm.nih.gov/nuccore/NC_000898
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
https://github.com/samtools/bcftools


Recombinant AAV capsid sequence. The VP1 sequence was gener-
ated by generating a consensus sequence from a multiple sequence 
alignment of sequenced AAV2 genomes derived from patient samples, 
using the Biopython71 package AlignIO. The designed VP1 sequence 
was then synthesized as a ‘gBlock’ (Integrated DNA Technologies) and 
incorporated into an AAV2 RepCap plasmid (AAV2/2 was a gift from  
M. Fan, Addgene plasmid #104963) between the SwaI and XmaI restric-
tion sites, using InFusion cloning reagent (product 638948, Clontech).

AAV vector production. rAAV particles were generated by transient 
transfection of HEK 293T cells as previously described72. In brief, 
1.8 × 107 cells were plated in 15-cm dishes before transfecting the 
pAAV-CAG-eGFP transgene plasmid (a gift from E. Boyden, Addgene 
plasmid #37825), the relevant RepCap plasmid and the pAdDeltaF6 
helper plasmid (a gift from J. M. Wilson, Addgene plasmid #112867), at 
a ratio of 10.5 µg, 10.5 µg and 30.5 µg, respectively, using PEIPro trans-
fection reagent (PolyPlus) at a ratio of 1 µl per 1 µg DNA. Seventy-two 
hours post-transfection, cell pellets and supernatant were harvested 
and rAAV particles were purified using an Akta HPLC platform. rAAV 
particle genome copy numbers were calculated by quantitative PCR 
targeting the vector transgene region. The rAAV2 vector used in this 
study was purchased as ready-to-use AAV2 particles from Addgene 
(Addgene viral prep #37825-AAV2).

Analysis of rAAV transduction. Huh-7 hepatocytes (a gift from  
J. Baruteau, UCL) were plated in DMEM medium supplemented with 
10% FBS and 1% penicillin–streptomycin supplement. The cell line was 
validated by testing for glypican-3 and was not tested for mycoplasma 
contamination. Cells were plated at a density of 1.5 × 103 cells per square 
centimetre and transduced with 1 × 105 viral genomes per cell. Transduc-
tions were performed in the presence or absence of 400 µg ml−1 heparin, 
which was supplemented directly to cell media. Seventy-two hours after 
transduction, cells were analysed by microscopy using an EVOS Cell 
Imaging System (Thermo Fisher Scientific) before quantifying eGFP  
expression by flow cytometry using a Cytoflex Flow Cytometer (Beckman). 
eGFP-positive cells were determined by gating the live-cell population 
and quantifying the level of eGFP signal versus untransduced controls.

Human short-read data analysis
Cytokine transcriptomics analysis. Cytokine inducible gene  
expression modules were derived from previously published bulk  
tissue genome-wide transcriptomes of the tuberculin skin test that have 
been shown to reflect canonical human in vivo cell-mediated immune 
pathways73 using a validated bioinformatic approach74. Cytokine regula-
tors of genes enriched in the tuberculin skin73 test (ArrayExpress acces-
sion number E-MTAB-6816) were identified using Ingenuity Pathway 
Analysis (Qiagen). Average correlation of log2-transformed transcripts 
per million data for every gene pair in each of the target gene modules 
were compared with 100 iterations of randomly selected gene modules 
of the same size, to select cytokine-inducible modules that showed 
significantly greater co-correlation (adjusted P < 0.05), representing 
co-regulated transcriptional networks for each 59 cytokines. We then 
used the average log2-transformed transcripts per million expression 
of all the genes in each of these co-regulated modules to quantify the 
biological activity of the associated upstream cytokine within bulk 
genome-wide transcriptional profiles from AAV2-associated hepa-
titis (n = 4) obtained in the present study, compared with published 
log2-transformed and normalized microarray data from normal adult  
liver (n = 10) and hepatitis B adult liver (n = 17) (Gene Expression  
Omnibus accession number GSE96851)18. To enable comparison across 
the datasets, we transformed average gene expression values for each 
cytokine-inducible module to standardized (Z scores) using mean and 
standard deviation of randomly selected gene sets of the same size 
within each individual dataset. Statistically significant differences 

in Z scores between groups were identified by Student’s t-tests with 
multiple testing correction (adjusted P < 0.05).

Proteomics differential expression. To compare the proteomics data 
from the explanted livers of cases with data from healthy livers, we 
downloaded the raw files from two studies19,20 from PRIDE. The raw 
files were searched together with our files using the same settings 
and databases.

We performed differential expression analyses at the protein level 
and peptide level using a hybrid approach including statistical infer-
ence on the abundance (quantitative approach), as well as the presence 
or absence (binary approach) of proteins or peptides. DEP R package 
version 1.18.0 was used for quantitative analysis75. Proteins or peptides 
were filtered for those detected in all replicates of at least one group 
(case or control). The data were background corrected and variance 
was normalized using variance-stabilizing transformation. Missing 
intensity values were not distributed randomly and were biased to 
specific samples (either cases or controls). Therefore, for imputing 
the missing data, we applied random draws from a manually defined 
left-shifted Gaussian distribution using the DEP impute function with 
parameters fun:“man”, shift:1.8 and scale:0.3. The test_diff function 
based on linear models and the empirical Bayes method was used for 
testing differential expressions between the case and control samples.

HLA typing methods. Typing was undertaken in the liver centre units. 
Next-generation sequencing (sequencing by synthesis (Illumina)  
using AllType kits (VHBio/OneLambda), a high-resolution HLA typing 
method, was used.

Statistical analysis
Fisher’s exact test and two-sided Wilcoxon (Mann–Whitney) non- 
parametric rank sum test were used for differences between case and 
control groups. Where multiple groups were compared, Kruskal– 
Wallis tests followed by Wilcoxon pairwise tests using a Benjamini–
Hochberg correction were performed. All analysis were performed 
in R version 4.2.0.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The consensus genomes from viral WGS data are deposited in GenBank. 
IDs can be found in Supplementary Table 7 (HAdV), Supplementary 
Table 9 (AAV2) and Supplementary Table 10 (HHV6). The MS proteom-
ics data have been deposited in the ProteomeXchange Consortium via 
the PRIDE partner repository with the dataset identifier PXD035925.

Code availability
The code for metagenomics and PCR analysis can be found at https://
github.com/sarah-buddle/unknown-hepatitis. The transcriptomics 
analysis code is available at https://github.com/innate2adaptive/
Bulk-RNAseq-analysis/tree/main/Zscore_gene_expression_module_ 
analysis. The proteomics differential expression analysis code can 
be found at https://github.com/MahdiMoradiMarjaneh/proteom-
ics_and_transcriptomics_of_hepatitis.
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Extended Data Fig. 1 | Evidence of AAV2 replication from meta- 
transcriptomics and RT-PCR. Mapping of AAV2 reads to the reference genome 
for a liver RNA-Seq from 4 cases, b blood RNA-Seq from 2 cases. The horizontal 

lines in the same colour as the coverage graph are the predicted transcripts for 
each case. The horizontal lines in purple and green are the AAV2 genes. c, RT-PCR 
results for liver cases. N: Negative PCR result.
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Extended Data Fig. 2 | Examples of AAV2 complexes. The y axis shows the 
coordinates of a full length AAV2 genome (rep gene in green and cap gene in 
yellow). X axis is the nanopore read with the length of the read indicated. Red 
dots indicate alignment to the forward strand and blue dots the reverse.  
a, indicative complexes based on literature8 b and c. Examples of complex 

structures with both head to tail and alternating repeats, from a total of n = 25 
and n = 75 such reads for cases 3 and 5 respectively. b shows the longest 2 reads 
for each case. d. Examples of truncated monomeric structures, from a total of 
n = 27 and n = 103 such reads for cases 3 and 5 respectively (Supplementary 
Table 3). The longest such read for each case is shown.



Extended Data Fig. 3 | HAdV and AAV2 sequence analysis. a, HAdV SNP plot: 
Visualisation of the multiple alignment of HAdV-F41 genomic sequences from 
the same clade as the single sequence from a case (highlighted in grey) (Fig. 3a). 
Includes both contemporary controls and publicly available HAdV-F41 
genomes from GenBank. Consensus-level mutations differing from the 
reference sequence (bottom) are highlighted across the genome. Genomic 
position of the mutation is shown at the top of the plot. b, Variants between 
stool complete HAdV genome from case JBB27 and combined blood partial 
genomes from other cases. c, Frequency table of capsid residues in cases and 
historical controls. There is no difference between the capsid sequences of 

cases and contemporaneously circulating controls. However, there are 
changes compared with historical controls in all contemporary sequences. 
None of the recently acquired capsid changes are shared with known 
hepatotrophic strains in AAV7, 8 and 9. d, Amino acid differences between 
AAV2 capsid sequences from cases, contemporaneously circulating controls 
and historical publicly available sequences compared with the AVV2 reference 
sequence NC_001401.2. Also shown are the capsid sequences from known 
AAV7, 8 and 9 hepatotropic capsids compared to the reference sequence 
NC_001401.2.

https://www.ncbi.nlm.nih.gov/nuccore/NC_001401
https://www.ncbi.nlm.nih.gov/nuccore/NC_001401
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Extended Data Fig. 4 | AAV2 capsid analysis. a, Amino acid sequence of novel 
AAV capsid variant. The consensus sequence of the VP1 sequence used for 
investigation of capsid transduction characteristics (AAVHepcase) is shown 
with alignment to canonical AAV2 VP1 (AAV2gp05). The alignment shows  
AAV2 amino acids that are different to the AAVHepcase sequence, with dots 
indicating matched amino acids sequence. b, In vitro analysis of AAV capsid 
transduction characteristics. Huh-7 hepatocytes were treated at MOI 100,000 
with rAAV vectors containing capsid sequences derived from canonical AAV2,  
a consensus sequence derived from patient sequencing samples (Hepcase), 
LK03, or AAV9 (n = 3 each treatment). Transduction efficiency was determined 
by flow cytometry, based on the percentage of EGFP-positive cells, the EGFP 
fluorescence intensity in positive cells, and the ‘relative activity’ of EGFP 
expression (calculated by multiplying %GFP-positive cells by MFI/10070). 

Transductions were performed in the presence or absence of 400 µg/mL 
heparin to investigate the role of HSPG interaction. rAAV2 was significantly 
affected by heparin competition, whereas other capsids, including that 
derived from AAV Hepcase, were not. Heparin competition significantly 
affected rAAV2 transduction in terms of percentage of GFP-positive cells 
(P = 0.0016), MFI (P = 0.000008), and relative activity (P = 0.000008), whereas 
other capsids, including that derived from AAV Hepcase, were not affected by 
heparin. All data were analysed by 2-sided t-test with Bonferroni post-hoc 
analysis. Error bars indicate standard deviation from the mean value. c, Images 
of Huh-7 cells treated with rAAV vectors in vitro. Images of transduced Huh-7 
cells. Each cell population was treated with MOI 100,000 of the relevant viral 
vector, in the presence or absence of 400 µg/mL heparin and analysed by EGFP 
fluorescence 72-hours post-transduction. Scale bars = 300 µm.



Extended Data Fig. 5 | Representative histology of case livers. a & b, H&E 
sections x100 and x200 showing a pattern of acute hepatitis with parenchymal 
disarray, there is a normal, uninflamed, portal tract lower left image a. Spotty 
inflammation and apoptotic bodies are shown in b along with perivenular 
hepatocyte loss/necrosis. Immunohistochemistry shows fewer mature B 
lymphocytes (CD20 panel c) than T lymphocytes (CD3, panel d, pan T cell 

marker) most of which are cytotoxic CD8 lymphocytes (panel e). In conclusion 
the livers of these children have a distinctive pattern of damage which does not 
indicate a specific aetiology, it does not exclude but does not offer positive 
support for either autoimmune hepatitis or a direct cytopathic effect of virus 
on hepatocytes. Each image shows a representative result from histology 
carried out on a minimum of five cases.
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Extended Data Fig. 6 | Immunohistochemistry results for cases of 
unexplained hepatitis and control tissues. a, Inflammatory markers (IgG, 
C4d, HLA-ABC, HLA-DR) in acute hepatitis cases and control liver. IgG, 
HLA-ABC and HLA-DR show a canalicular pattern in the control liver. This 
pattern is disrupted in the acute hepatitis cases due to the architectural 
collapse. In addition, there is increased staining associated with inflammatory 
cell/macrophage infiltrates. C4d shows very weak staining in the acute 
hepatitis cases associated with macrophages but with without endothelial 
staining. All stains were undertaken on 5 affected cases and 13 control cases.  

b, Representative images of the immunohistochemistry (IHC). Acute hepatitis 
liver explant cases stained for HHV6, arrow shows staining of A representative 
cells, B adenovirus, AAV2 (C polyclonal antibody, E monoclonal antibody, clone A1). 
Paraffin embedded AAV2 transfected cell lines stained as positive controls for 
AAV2 (D polyclonal antibody, F monoclonal antibody, clone A1). All scale bars 
are 60 micrometres. HHV6, AAV2 (polyclonal) stains were undertaken on  
15 affected cases and 13 controls. AAV2 (A1) stains were undertaken on  
5 affected cases and 13 control cases. Staining for adenovirus was undertaken 
on 5 affected cases.



Extended Data Fig. 7 | Cytokine inducible transcriptional modules. Volcano 
plot of cytokine inducible transcriptional modules (n = 52) comparing their Z 
score expression in AAV2-associated hepatitis (n = 4) and HBV-associated 
hepatitis (n = 17) requiring transplantation using two-tailed unpaired t tests 

with Holm Sidak multiple testing correction for adjusted p values (n refers to 
number of patients). Each point represents a specific module listed in full in 
Supplementary Table 13. Labels for selected modules are shown.
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Extended Data Fig. 8 | HLA and HHV-6B proteins in case livers. a & b Ranking 
of the quantified proteins using the log10 of iBAQ values for a JBL1, b JBL2,  
c JBL3, d JBL4, e JBL5. f, Scatter plot of quantified proteins in sample JBL4 versus 

JBL5. HLA proteins are highlighted in red. Red arrows denote HLA-DRB1 
proteins. HHV6 proteins are highlighted in green and marked with green 
arrows.



Extended Data Table 1 | PCR and whole genome sequencing for samples from cases where metagenomic sequencing was 
not performed

-: Not tested due to insufficient residual material. 
N: negative PCR result. 
P: Positive PCR result in referring laboratory. 
Where two results are shown, the first refers to the referring laboratory and the second to GOSH. Where there was a discrepancy, the positive result is shown. 
F: Failed. 
Where there is more than one sample for a single patient, Ct values represent the mean across the samples that were tested. 
*Metagenomics reads: the result of combining the datasets from two blood samples from the same case. 
De novo assembly of unclassified metagenomics reads was unremarkable.
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Extended Data Table 2 | Controls and comparators

a Summary of DIAMONDS and PERFORM immunocompetent controls. b immunocompromised comparators. c age distribution of blood comparator and control patients from GOSH,  
DIAMONDS and PERFORM.
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