34 research outputs found

    Transcriptional responses of Biomphalaria pfeifferi and Schistosoma mansoni following exposure to niclosamide, with evidence for a synergistic effect on snails following exposure to both stressors.

    Get PDF
    BackgroundSchistosomiasis is one of the world's most common NTDs. Successful control operations often target snail vectors with the molluscicide niclosamide. Little is known about how niclosamide affects snails, including for Biomphalaria pfeifferi, the most important vector for Schistosoma mansoni in Africa. We used Illumina technology to explore how field-derived B. pfeifferi, either uninfected or harboring cercariae-producing S. mansoni sporocysts, respond to a sublethal treatment of niclosamide. This study afforded the opportunity to determine if snails respond differently to biotic or abiotic stressors, and if they reserve unique responses for when presented with both stressors in combination. We also examined how sporocysts respond when their snail host is treated with niclosamide.Principal findingsCercariae-producing sporocysts within snails treated with niclosamide express ~68% of the genes in the S. mansoni genome, as compared to 66% expressed by intramolluscan stages of S. mansoni in snails not treated with niclosamide. Niclosamide does not disable sporocysts nor does it seem to provoke from them distinctive responses associated with detoxifying a xenobiotic. For uninfected B. pfeifferi, niclosamide treatment alone increases expression of several features not up-regulated in infected snails including particular cytochrome p450s and heat shock proteins, glutathione-S-transferases, antimicrobial factors like LBP/BPI and protease inhibitors, and also provokes strong down regulation of proteases. Exposure of infected snails to niclosamide resulted in numerous up-regulated responses associated with apoptosis along with down-regulated ribosomal and defense functions, indicative of a distinctive, compromised state not achieved with either stimulus alone.Conclusions/significanceThis study helps define the transcriptomic responses of an important and under-studied schistosome vector to S. mansoni sporocysts, to niclosamide, and to both in combination. It suggests the response of S. mansoni sporocysts to niclosamide is minimal and not reflective of a distinct repertoire of genes to handle xenobiotics while in the snail host. It also offers new insights for how niclosamide affects snails

    The in vivo transcriptome of Schistosoma mansoni in the prominent vector species Biomphalaria pfeifferi with supporting observations from Biomphalaria glabrata.

    Get PDF
    BackgroundThe full scope of the genes expressed by schistosomes during intramolluscan development has yet to be characterized. Understanding the gene products deployed by larval schistosomes in their snail hosts will provide insights into their establishment, maintenance, asexual reproduction, ability to castrate their hosts, and their prolific production of human-infective cercariae. Using the Illumina platform, the intramolluscan transcriptome of Schistosoma mansoni was investigated in field-derived specimens of the prominent vector species Biomphalaria pfeifferi at 1 and 3 days post infection (d) and from snails shedding cercariae. These S. mansoni samples were derived from the same snails used in our complementary B. pfeifferi transcriptomic study. We supplemented this view with microarray analyses of S. mansoni from B. glabrata at 2d, 4d, 8d, 16d, and 32d to highlight robust features of S. mansoni transcription, even when a different technique and vector species was used.Principal findingsTranscripts representing at least 7,740 (66%) of known S. mansoni genes were expressed during intramolluscan development, with the greatest number expressed in snails shedding cercariae. Many transcripts were constitutively expressed throughout development featuring membrane transporters, and metabolic enzymes involved in protein and nucleic acid synthesis and cell division. Several proteases and protease inhibitors were expressed at all stages, including some proteases usually associated with cercariae. Transcripts associated with G-protein coupled receptors, germ cell perpetuation, and stress responses and defense were well represented. We noted transcripts homologous to planarian anti-bacterial factors, several neural development or neuropeptide transcripts including neuropeptide Y, and receptors that may be associated with schistosome germinal cell maintenance that could also impact host reproduction. In at least one snail the presence of larvae of another digenean species (an amphistome) was associated with repressed S. mansoni transcriptional activity.Conclusions/significanceThis in vivo study, emphasizing field-derived snails and schistosomes, but supplemented with observations from a lab model, provides a distinct view from previous studies of development of cultured intramolluscan stages from lab-maintained organisms. We found many highly represented transcripts with suspected or unknown functions, with connection to intramolluscan development yet to be elucidated

    Complete representation of a tapeworm genome reveals chromosomes capped by centromeres, necessitating a dual role in segregation and protection

    Get PDF
    Background: Chromosome-level assemblies are indispensable for accurate gene prediction, synteny assessment, and understanding higher-order genome architecture. Reference and draft genomes of key helminth species have been published, but little is yet known about the biology of their chromosomes. Here, we present the complete genome of the tapeworm Hymenolepis microstoma, providing a reference quality, end-to-end assembly that represents the first fully assembled genome of a spiralian/lophotrochozoan, revealing new insights into chromosome evolution. Results: Long-read sequencing and optical mapping data were added to previous short-read data enabling complete re-assembly into six chromosomes, consistent with karyology. Small genome size (169 Mb) and lack of haploid variation (1 SNP/3.2 Mb) contributed to exceptionally high contiguity with only 85 gaps remaining in regions of low complexity sequence. Resolution of repeat regions reveals novel gene expansions, micro-exon genes, and spliced leader trans-splicing, and illuminates the landscape of transposable elements, explaining observed length differences in sister chromatids. Syntenic comparison with other parasitic flatworms shows conserved ancestral linkage groups indicating that the H. microstoma karyotype evolved through fusion events. Strikingly, the assembly reveals that the chromosomes terminate in centromeric arrays, indicating that these motifs play a role not only in segregation, but also in protecting the linear integrity and full lengths of chromosomes. Conclusions: Despite strong conservation of canonical telomeres, our results show that they can be substituted by more complex, species-specific sequences, as represented by centromeres. The assembly provides a robust platform for investigations that require complete genome representation

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Transcriptional responses of Biomphalaria pfeifferi and Schistosoma mansoni following exposure to niclosamide, with evidence for a synergistic effect on snails following exposure to both stressors.

    No full text
    BackgroundSchistosomiasis is one of the world's most common NTDs. Successful control operations often target snail vectors with the molluscicide niclosamide. Little is known about how niclosamide affects snails, including for Biomphalaria pfeifferi, the most important vector for Schistosoma mansoni in Africa. We used Illumina technology to explore how field-derived B. pfeifferi, either uninfected or harboring cercariae-producing S. mansoni sporocysts, respond to a sublethal treatment of niclosamide. This study afforded the opportunity to determine if snails respond differently to biotic or abiotic stressors, and if they reserve unique responses for when presented with both stressors in combination. We also examined how sporocysts respond when their snail host is treated with niclosamide.Principal findingsCercariae-producing sporocysts within snails treated with niclosamide express ~68% of the genes in the S. mansoni genome, as compared to 66% expressed by intramolluscan stages of S. mansoni in snails not treated with niclosamide. Niclosamide does not disable sporocysts nor does it seem to provoke from them distinctive responses associated with detoxifying a xenobiotic. For uninfected B. pfeifferi, niclosamide treatment alone increases expression of several features not up-regulated in infected snails including particular cytochrome p450s and heat shock proteins, glutathione-S-transferases, antimicrobial factors like LBP/BPI and protease inhibitors, and also provokes strong down regulation of proteases. Exposure of infected snails to niclosamide resulted in numerous up-regulated responses associated with apoptosis along with down-regulated ribosomal and defense functions, indicative of a distinctive, compromised state not achieved with either stimulus alone.Conclusions/significanceThis study helps define the transcriptomic responses of an important and under-studied schistosome vector to S. mansoni sporocysts, to niclosamide, and to both in combination. It suggests the response of S. mansoni sporocysts to niclosamide is minimal and not reflective of a distinct repertoire of genes to handle xenobiotics while in the snail host. It also offers new insights for how niclosamide affects snails

    The in vivo transcriptome of Schistosoma mansoni in the prominent vector species Biomphalaria pfeifferi with supporting observations from Biomphalaria glabrata.

    No full text
    BackgroundThe full scope of the genes expressed by schistosomes during intramolluscan development has yet to be characterized. Understanding the gene products deployed by larval schistosomes in their snail hosts will provide insights into their establishment, maintenance, asexual reproduction, ability to castrate their hosts, and their prolific production of human-infective cercariae. Using the Illumina platform, the intramolluscan transcriptome of Schistosoma mansoni was investigated in field-derived specimens of the prominent vector species Biomphalaria pfeifferi at 1 and 3 days post infection (d) and from snails shedding cercariae. These S. mansoni samples were derived from the same snails used in our complementary B. pfeifferi transcriptomic study. We supplemented this view with microarray analyses of S. mansoni from B. glabrata at 2d, 4d, 8d, 16d, and 32d to highlight robust features of S. mansoni transcription, even when a different technique and vector species was used.Principal findingsTranscripts representing at least 7,740 (66%) of known S. mansoni genes were expressed during intramolluscan development, with the greatest number expressed in snails shedding cercariae. Many transcripts were constitutively expressed throughout development featuring membrane transporters, and metabolic enzymes involved in protein and nucleic acid synthesis and cell division. Several proteases and protease inhibitors were expressed at all stages, including some proteases usually associated with cercariae. Transcripts associated with G-protein coupled receptors, germ cell perpetuation, and stress responses and defense were well represented. We noted transcripts homologous to planarian anti-bacterial factors, several neural development or neuropeptide transcripts including neuropeptide Y, and receptors that may be associated with schistosome germinal cell maintenance that could also impact host reproduction. In at least one snail the presence of larvae of another digenean species (an amphistome) was associated with repressed S. mansoni transcriptional activity.Conclusions/significanceThis in vivo study, emphasizing field-derived snails and schistosomes, but supplemented with observations from a lab model, provides a distinct view from previous studies of development of cultured intramolluscan stages from lab-maintained organisms. We found many highly represented transcripts with suspected or unknown functions, with connection to intramolluscan development yet to be elucidated
    corecore