33 research outputs found

    Simulating hydrological and nonpoint source pollution processes in a karst watershed: A variable source area hydrology model evaluation

    Get PDF
    AbstractAn ecohydrological watershed model can be used to develop an efficient watershed management plan for improving water quality. However, karst geology poses unique challenges in accurately simulating management impacts to both surface and groundwater hydrology. Two versions of the Soil and Water Assessment Tool (SWAT), Regular-SWAT and Topo-SWAT (which incorporates variable source area hydrology), were assessed for their robustness in simulating hydrology of the karstic Spring Creek watershed of Centre County, Pennsylvania, USA. Appropriate representations of surface water – groundwater interactions and of spring recharge – discharge areas were critical for simulating this karst watershed. Both Regular-SWAT and Topo-SWAT described the watershed discharge adequately with daily Nash-Sutcliffe efficiencies (NSE) ranging from 0.77 to 0.79 for calibration and 0.68–0.73 for validation, respectively. Because Topo-SWAT more accurately represented measured daily streamflow, with statistically significant improvement of NSE over Regular-SWAT during validation (p-value=0.05) and, unlike Regular-SWAT, had the capability of spatially mapping recharge/infiltration and runoff generation areas within the watershed, Topo-SWAT was selected to predict nutrient and sediment loads. Total watershed load estimates (518t nitrogen/year, 45t phosphorus/year, and 13600t sediment/year) were within 10% of observed values (−9.2% percent bias for nitrogen, 6.6% for phosphorous, and 5.4% for sediment). Nutrient distributions among transport pathways, such as leaching and overland flow, corresponded with observed values. This study demonstrates that Topo-SWAT can be a valuable tool in future studies of agricultural land management change in karst regions

    Assessing Coastal Plain Risk Indices for Subsurface Phosphorus Loss

    Get PDF
    Phosphorus (P) Index evaluations are critical to advancing nutrient management planning in the United States. However, most assessments until now have focused on the risks of P losses in surface runoff. In artificially drained agroecosystems of the Atlantic Coastal Plain, subsurface flow is the predominant mode of P transport, but its representation in most P Indices is often inadequate. We explored methods to evaluate the subsurface P risk routines of five P Indices from Delaware, Maryland (two), Virginia, and North Carolina using available water quality and soils datasets. Relationships between subsurface P risk scores and published dissolved P loads in leachate (Delaware, Maryland, and North Carolina) and ditch drainage (Maryland) were directionally correct and often statistically significant, yet the brevity of the observation periods (weeks to several years) and the limited number of sampling locations precluded a more robust assessment of each P Index. Given the paucity of measured P loss data, we then showed that soil water extractable P concentrations at depths corresponding with the seasonal high water table (WEPWT) could serve as a realistic proxy for subsurface P losses in ditch drainage. The associations between WEPWT and subsurface P risk ratings reasonably mirrored those obtained with sparser water quality data. As such, WEPWT is seen as a valuable metric that offers interim insight into the directionality of subsurface P risk scores when water quality data are inaccessible. In the long term, improved monitoring and modeling of subsurface P losses clearly should enhance the rigor of future P Index appraisals

    Ecosystem resilience despite large-scale altered hydroclimatic conditions

    Full text link
    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Large-scale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUE e: Above-ground net primary production/ evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUE e in drier years that increased significantly with drought to a maximum WUE e across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought - that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUE e may allow us to predict land-surface consequences as large regions become more arid, starting with water-limited, low-productivity grasslands. © 2013 Macmillan Publishers Limited. All rights reserved

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Critical Review of Polyphosphate and Polyphosphate Accumulating Organisms for Agricultural Water Quality Management

    No full text
    Despite ongoing management efforts, phosphorus (P) loading from agricultural landscapes continues to impair water quality. Wastewater treatment research has enhanced our knowledge of microbial mechanisms influencing P cycling, especially regarding microbes known as polyphosphate accumulating organisms (PAOs) that store P as polyphosphate (polyP) under oxic conditions and release P under anoxic conditions. However, there is limited application of PAO research to reduce agricultural P loading and improve water quality. Herein, we conducted a meta-analysis to identify articles in Web of Science on polyP and its use by PAOs across five disciplines (i.e., wastewater treatment, terrestrial, freshwater, marine, and agriculture). We also summarized research that provides preliminary support for PAO-mediated P cycling in natural habitats. Terrestrial, freshwater, marine, and agriculture disciplines had fewer polyP and PAO articles compared to wastewater treatment, with agriculture consistently having the least. Most meta-analysis articles did not overlap disciplines. We found preliminary support for PAOs in natural habitats and identified several knowledge gaps and research opportunities. There is an urgent need for interdisciplinary research linking PAOs, polyP, and oxygen availability with existing knowledge of P forms and cycling mechanisms in natural and agricultural environments to improve agricultural P management strategies and achieve water quality goals

    Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model

    Get PDF
    Phosphorus (P) loss from agricultural watersheds has long been a critical water quality problem, the control of which has been the focus of considerable research and investment. Preventing P loss depends on accurately representing the hydrological and chemical processes governing P mobilization and transport. The Soil and Water Assessment Tool (SWAT) is a watershed model commonly used to predict run-off and non-point source pollution transport. SWAT simulates run-off employing either the curve number (CN) or the Green and Ampt methods, both assume infiltration-excess run-off, although shallow soils underlain by a restricting layer commonly generate saturation-excess run-off from variable source areas (VSA). In this study, we compared traditional SWAT with a re-conceptualized version, SWAT-VSA, that represents VSA hydrology, in a complex agricultural watershed in east central Pennsylvania. The objectives of this research were to provide further evidence of SWAT-VSA’s integrated and distributed predictive capabilities against measured surface run-off and stream P loads and to highlight the model’s ability to drive sub-field management of P. Thus, we relied on a detailed field management database to parameterize the models. SWAT and SWAT-VSA predicted discharge similarly well (daily Nash–Sutcliffe efficiencies of 0.61 and 0.66, respectively), but SWAT-VSA outperformed SWAT in predicting P export from the watershed. SWAT estimated lower P loss (0.0–0.25 kg ha^-1) from agricultural fields than SWAT-VSA (0.0–1.0+ kg ha^-1), which also identified critical source areas – those areas generating large run-off and P losses at the sub-field level. These results support the use of SWAT-VSA in predicting watershed-scale P losses and identifying critical source areas of P loss in landscapes with VSA hydrology

    Long-term trends in climate and hydrology in an agricultural, headwater watershed of central Pennsylvania, USA

    Get PDF
    AbstractStudy regionThe WE-38 Experimental Watershed, which is a small (7.3 km2) basin in the Ridge and Valley physiographic region of east-central Pennsylvania.Study focusWe used non-parametric Mann-Kendall tests to examine long-term (1968 to 2012) hydroclimatic (precipitation, temperature, streamflow) trends in WE-38 in the context of recent climate change across northeastern US.New hydrological insights for the regionAnnual mean temperatures in WE-38 increased 0.38°C per decade, leading to an expansion of the growing season (+2.8 days per decade) and a contraction of frost days (-3.6 days per decade). Consistent with increased temperatures, annual actual evapotranspiration rose significantly (+37.1mm per decade) over the study period. Precipitation also trended upward, with October experiencing the most significant increases in monthly total rainfall (+8.2mm per decade). While augmented October precipitation led to increased October streamflow (+5.0mm per decade), the trend in WE-38 streamflow was downward, with the most significant declines in July (-1.2mm per decade) and February (-7.5mm per decade). Declines in summertime streamflow also increased the duration of hydrological droughts (maximum consecutive days with streamflow < 10th percentile) by 1.9 days per decade. While our findings suggest some challenges for producers and water resource managers, most notably with increased fall rainfall and runoff, some changes such as enhanced growing seasons can be viewed positively, at least in the near term
    corecore