324 research outputs found
Multidisciplinary Approach to the Diagnosis and In-Hospital Management of COVID-19 Infection: A Narrative Review
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or COVID-19 disease) was declared a pandemic on 11th March 2020 by the World Health Organization. This unprecedented circumstance has challenged hospitalsâ response capacity, requiring significant structural and organizational changes to cope with the surge in healthcare demand and to minimize in-hospital risk of transmission. As our knowledge advances, we now understand that COVID-19 is a multi-systemic disease rather than a mere respiratory tract infection, therefore requiring holistic care and expertise from various medical specialties. In fact, the clinical spectrum of presentation ranges from respiratory complaints to gastrointestinal, cardiac or neurological symptoms. In addition, COVID-19 pandemic has created a global burden of mental illness that affects the general population as well as healthcare practitioners. The aim of this manuscript is to provide a comprehensive and multidisciplinary insight into the complexity of this disease, reviewing current scientific evidence on COVID-19 management and treatment across several medical specialties involved in the in-hospital care of these patients
Brimonidine is Neuroprotective in Animal Paradigm of Retinal Ganglion Cell Damage
To investigate the neuroprotective effect of brimonidine after retinal ischemia damage on mouse eye. Glaucoma is an optic neuropathy characterized by retinal ganglion cells (RGCs) death, irreversible peripheral and central visual field loss, and high intraocular pressure. Ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to mimic conditions of glaucomatous neurodegeneration. Mouse eyes were treated topically with brimonidine and pattern electroretinogram were used to assess the retinal ganglion cells (RGCs) function. A wide range of inflammatory markers, as well as anti-inflammatory and neurotrophic molecules, were investigated to figure out the potential protective effects of brimonidine in mouse retina. In particular, brain-derived neurotrophic factor (BDNF), IL-6, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptor DR-5, TNF-ι, GFAP, Iba-1, NOS, IL-1β and IL-10 were assessed in mouse retina that underwent to I/R insult with or without brimonidine treatment. Brimonidine provided remarkable RGCs protection in our paradigm. PERG amplitude values were significantly (p < 0.05) higher in brimonidine-treated eyes in comparison to I/R retinas. Retinal BDNF mRNA levels in the I/R group dropped significantly (p < 0.05) compared to the control group (normal mice); brimonidine treatment counteracted the downregulation of retinal BDNF mRNA in I/R eyes. Retinal inflammatory markers increased significantly (p < 0.05) in the I/R group and brimonidine treatment was able to revert that. The anti-inflammatory IL-10 decreased significantly (p < 0.05) after retinal I/R insult and increased significantly (p < 0.05) in the group treated with brimonidine. In conclusion, brimonidine was effective in preventing loss of function of RGCs and in regulating inflammatory biomarkers elicited by retinal I/R injury
Dopaminergic-GABAergic interplay and alcohol binge drinking
Š 2019 Elsevier Ltd The dopamine D 3 receptor (D 3 R), in the nucleus accumbens (NAc), plays an important role in alcohol reward mechanisms. The major neuronal type within the NAc is the GABAergic medium spiny neuron (MSN), whose activity is regulated by dopaminergic inputs. We previously reported that genetic deletion or pharmacological blockade of D 3 R increases GABA A Îą6 subunit in the ventral striatum. Here we tested the hypothesis that D 3 R-dependent changes in GABA A Îą6 subunit in the NAc affect voluntary alcohol intake, by influencing the inhibitory transmission of MSNs. We performed in vivo and ex vivo experiments in D 3 R knockout (D 3 R â/â ) mice and wild type littermates (D 3 R +/+ ). Ro 15-4513, a high affinity Îą6-GABA A ligand was used to study Îą6 activity. At baseline, NAc Îą6 expression was negligible in D 3 R +/+ , whereas it was robust in D 3 R â/â ; other relevant GABA A subunits were not changed. In situ hybridization and qPCR confirmed Îą6 subunit mRNA expression especially in the NAc. In the drinking-in-the-dark paradigm, systemic administration of Ro 15-4513 inhibited alcohol intake in D 3 R +/+ , but increased it in D 3 R â/â ; this was confirmed by intra-NAc administration of Ro 15-4513 and furosemide, a selective Îą6-GABA A antagonist. Whole-cell patch-clamp showed peak amplitudes of miniature inhibitory postsynaptic currents in NAc medium spiny neurons higher in D 3 R â/â compared to D 3 R +/+ ; Ro 15-4513 reduced the peak amplitude in the NAc of D 3 R â/â , but not in D 3 R +/+ . We conclude that D 3 R-dependent enhanced expression of Îą6 GABA A subunit inhibits voluntary alcohol intake by increasing GABA inhibition in the NAc
Modulation of Pro-Oxidant and Pro-Inflammatory Activities of M1 Macrophages by the Natural Dipeptide Carnosine
This work is licensed under a Creative Commons Attribution 4.0 International License.Carnosine is a natural endogenous dipeptide widely distributed in mammalian tissues, existing at particularly high concentrations in the muscles and brain and possesses well-characterized antioxidant and anti-inflammatory activities. In an in vitro model of macrophage activation, induced by lipopolysaccharide + interferon-gamma (LPS + IFN-γ), we here report the ability of carnosine to modulate pro-oxidant and pro-inflammatory activities of macrophages, representing the primary cell type that is activated as a part of the immune response. An ample set of parameters aimed to evaluate cytotoxicity (MTT assay), energy metabolism (HPLC), gene expressions (high-throughput real-time PCR (qRT-PCR)), protein expressions (western blot) and nitric oxide production (qRT-PCR and HPLC), was used to assess the effects of carnosine on activated macrophages challenged with a non cytotoxic LPS (100 ng/mL) + IFN-γ (600 U/mL) concentration. In our experimental model, main carnosine beneficial effects were: (1) the modulation of nitric oxide production and metabolism; (2) the amelioration of the macrophage energy state; (3) the decrease of the expressions of pro-oxidant enzymes (Nox-2, Cox-2) and of the lipid peroxidation product malondialdehyde; (4) the restoration and/or increase of the expressions of antioxidant enzymes (Gpx1, SOD-2 and Cat); (5) the increase of the transforming growth factor-β1 (TGF-β1) and the down-regulation of the expressions of interleukins 1β and 6 (IL-1β and IL-6) and 6) the increase of the expressions of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). According to these results carnosine is worth being tested in the treatment of diseases characterized by elevated levels of oxidative stress and inflammation (atherosclerosis, cancer, depression, metabolic syndrome, and neurodegenerative diseases)
Epiretinal Membrane Vitrectomy With and Without Intraoperative Intravitreal Dexamethasone Implant: A Systematic Review With Meta-Analysis
Purpose: To evaluate the efficacy of vitrectomy combined with intravitreal dexamethasone implant vs. vitrectomy without the implant in patients with epiretinal membrane (ERM) by conducting a systematic review and meta-analysis. Methods: Studies that compared ERM vitrectomy with and without intraoperative dexamethasone implant with a follow-up 653 months were included. The primary outcome was mean best corrected visual acuity (BCVA) change between eyes undergoing ERM vitrectomy combined with dexamethasone implant (DEX group) and eyes undergoing ERM vitrectomy alone (control group) at 3 months. Secondary outcomes included mean BCVA change at 6 months and mean optical coherence tomography central macular thickness (CMT) change at both 3-months and 6-months follow-up. Mean differences (MDs) with their 95% confidence interval (95%CI) were calculated. Meta-analyses were based either on random effect model or fixed effect model according to heterogeneity. Results: Four studies were included. At 3 months, ERM vitrectomy combined with dexamethasone implant yielded a greater visual gain compared to vitrectomy alone (MD = 9.7; 95%CI = 2.6\u201316.8; p = 0.01). However, significant heterogeneity was found. A sensitivity analysis excluding the only retrospective non-randomized study confirmed a greater visual gain in the DEX group (MD = 7.1; 95%CI = 2.7\u201311.6; p < 0.01), with no heterogeneity. At 6 months, a non-significant but borderline difference in visual gain was shown between in the two groups (MD = 5.1; 95%CI = 120.3\u201310.5; p = 0.06), with no heterogeneity. Three-month analysis of CMT revealed a greater reduction in the DEX group (MD = 1280.2; 95%CI = 12149.1\u201311.2; p = 0.02), but with significant heterogeneity. A sensitivity analysis excluding the only retrospective non-randomized study allowed to reduce heterogeneity, but no difference in 3-months CMT change was found between the two groups (MD = 1250.0; 95%CI = 12106.2\u20136.2; p = 0.08). At 6 months, no difference in CMT change was shown between the two groups (MD = 1248.5; 95%CI = 12120.5\u201323.5; p = 0.19), with significant heterogeneity. Conclusions: Intraoperative dexamethasone implant in eyes undergoing vitrectomy for ERM provided a better visual outcome at 3 months compared to ERM vitrectomy without the implant, with limited evidence of better anatomic outcome as well. Further studies are needed to ascertain whether dexamethasone implant would ensure a significant long-term visual benefit as a result of a faster reduction of macular thickening
Carnosine Protects Macrophages against the Toxicity of Aβ1-42 Oligomers by Decreasing Oxidative Stress
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide has well-known antioxidant, anti-inflammatory, and anti-aggregation activities, and it may be useful for treatment of neurodegenerative disorders such as Alzheimerâs disease (AD). In this disease, peripheral infiltrating macrophages play a substantial role in the clearance of amyloid beta (Aβ) peptides from the brain. Correspondingly, in patients suffering from AD, defects in the capacity of peripheral macrophages to engulf Aβ have been reported. The effects of carnosine on macrophages and oxidative stress associated with AD are consequently of substantial interest for drug discovery in this field. In the present work, a model of stress induced by Aβ1-42 oligomers was investigated using a combination of methods including trypan blue exclusion, microchip electrophoresis with laser-induced fluorescence, flow cytometry, fluorescence microscopy, and high-throughput quantitative real-time PCR. These assays were used to assess the ability of carnosine to protect macrophage cells, modulate oxidative stress, and profile the expression of genes related to inflammation and pro- and antioxidant systems. We found that pre-treatment of RAW 264.7 macrophages with carnosine counteracted cell death and apoptosis induced by Aβ1-42 oligomers by decreasing oxidative stress as measured by levels of intracellular nitric oxide (NO)/reactive oxygen species (ROS) and production of peroxynitrite. This protective activity of carnosine was not mediated by modulation of the canonical inflammatory pathway but instead can be explained by the well-known antioxidant and free-radical scavenging activities of carnosine, enhanced macrophage phagocytic activity, and the rescue of fractalkine receptor CX3CR1. These new findings obtained with macrophages challenged with Aβ1-42 oligomers, along with the well-known multimodal mechanism of action of carnosine in vitro and in vivo, substantiate the therapeutic potential of this dipeptide in the context of AD pathology
Carnosine Decreases PMA-Induced Oxidative Stress and Inflammation in Murine Macrophages
This work is licensed under a Creative Commons Attribution 4.0 International License.Carnosine is an endogenous dipeptide composed of β-alanine and L-histidine. This naturally occurring molecule is present at high concentrations in several mammalian excitable tissues such as muscles and brain, while it can be found at low concentrations in a few invertebrates. Carnosine has been shown to be involved in different cellular defense mechanisms including the inhibition of protein cross-linking, reactive oxygen and nitrogen species detoxification as well as the counteraction of inflammation. As a part of the immune response, macrophages are the primary cell type that is activated. These cells play a crucial role in many diseases associated with oxidative stress and inflammation, including atherosclerosis, diabetes, and neurodegenerative diseases. In the present study, carnosine was first tested for its ability to counteract oxidative stress. In our experimental model, represented by RAW 264.7 macrophages challenged with phorbol 12-myristate 13-acetate (PMA) and superoxide dismutase (SOD) inhibitors, carnosine was able to decrease the intracellular concentration of superoxide anions (O2ââ˘) as well as the expression of Nox1 and Nox2 enzyme genes. This carnosine antioxidant activity was accompanied by the attenuation of the PMA-induced Akt phosphorylation, the down-regulation of TNF-Îą and IL-6 mRNAs, and the up-regulation of the expression of the anti-inflammatory mediators IL-4, IL-10, and TGF-β1. Additionally, when carnosine was used at the highest dose (20 mM), there was a generalized amelioration of the macrophage energy state, evaluated through the increase both in the total nucleoside triphosphate concentrations and the sum of the pool of intracellular nicotinic coenzymes. Finally, carnosine was able to decrease the oxidized (NADP+)/reduced (NADPH) ratio of nicotinamide adenine dinucleotide phosphate in a concentration dependent manner, indicating a strong inhibitory effect of this molecule towards the main source of reactive oxygen species in macrophages. Our data suggest a multimodal mechanism of action of carnosine underlying its beneficial effects on macrophage cells under oxidative stress and inflammation conditions
The epistatic interaction between the dopamine D3 receptor and dysbindin-1 modulates higher-order cognitive functions in mice and humans
The dopamine D2 and D3 receptors are implicated in schizophrenia and its pharmacological treatments. These receptors undergo intracellular trafficking processes that are modulated by dysbindin-1 (Dys). Indeed, Dys variants alter cognitive responses to antipsychotic drugs through D2-mediated mechanisms. However, the mechanism by which Dys might selectively interfere with the D3 receptor subtype is unknown. Here, we revealed an interaction between functional genetic variants altering Dys and D3. Specifically, both in patients with schizophrenia and in genetically modified mice, concomitant reduction in D3 and Dys functionality was associated with improved executive and working memory abilities. This D3/Dys interaction produced a D2/D3 imbalance favoring increased D2 signaling in the prefrontal cortex (PFC) but not in the striatum. No epistatic effects on the clinical positive and negative syndrome scale (PANSS) scores were evident, while only marginal effects on sensorimotor gating, locomotor functions, and social behavior were observed in mice. This genetic interaction between D3 and Dys suggests the D2/D3 imbalance in the PFC as a target for patient stratification and procognitive treatments in schizophrenia
Association of mitral annulus calcification, aortic valve calcification with carotid intima media thickness
BACKGROUND: Mitral annular calcification (MAC) and aortic annular calcification (AVC) may represent a manifestation of generalized atherosclerosis in the elederly. Alterations in vascular structure, as indexed by the intima media thickness (IMT), are also recognized as independent predictors of adverse cardiovascular outcomes. AIM: To examine the relationship between the degree of calcification at mitral and/or aortic valve annulus and large artery structure (thickness). METHODS: We evaluated 102 consecutive patients who underwent transthoracic echocardiography and carotid artery echoDoppler for various indications; variables measured were: systemic blood pressure (BP), pulse pressure (PP=SBP-DBP), body mass index (BMI), fasting glucose, total, HDL, LDL chlolesterol, triglycerides, cIMT. The patients were divided according to a grading of valvular/annular lesions independent scores based on acoustic densitometry: 1 = annular/valvular sclerosis/calcification absence; 2 = annular/valvular sclerosis; 3 = annular calcification; 4 = annular-valvular calcification; 5 = valvular calcification with no recognition of the leaflets. RESULTS: Patient score was the highest observed for either valvular/annulus. Mean cIMT increased linearly with increasing valvular calcification score, ranging from 3.9 Âą 0.48 mm in controls to 12.9 Âą 1.8 mm in those subjects scored 5 (p < 0.0001). In the first to fourth quartile of cIMT values the respective maximal percentual of score were: score 1: 76.1%, score 2: 70.1%, score 4: 54.3% and score 5: 69.5% (p > 0.0001). CONCLUSION: MAC and AVC score can identify subgroups of patients with different cIMT values which indicate different incidence and prevalence of systemic artery diseases. This data may confirm MAC-AVC as a useful important diagnostic parameter of systemic atherosclerotic disease
Lipoprotein (a), C-reactive protein and some metabolic cardiovascular risk factors in type 2 DM
<p>Abstract</p> <p>Background</p> <p>Lipoprotein (a) (LP (a) is an independent cardiovascular risk factor that is not widely studied in people of sub-Saharan African origin. The aim of this report is to determine the frequency of occurrence of elevated Lp (a) and possible relationship with total cholesterol (TCHOL), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides (TG), C reactive protein (CRP) and serum uric acid (SUA).</p> <p>Methods</p> <p>This is a cross sectional study carried out in 200 Nigerian patients with type 2 DM and 100 sex and age matched healthy Controls aged between 32-86 years. We determined the frequency of occurrence of elevated Lp (a) levels in the study subjects and compared clinical and biochemical variables between type 2 diabetic patients and non-diabetic patients. Clinical and biochemical parameters were also compared between subjects with type 2 DM who had elevated LP (a) and normal LP (a) levels. Long term glycaemic control using glycosylated haemoglobin was determined and compared in the study subjects. Test statistics used include chi square, correlation coefficient analysis and Student's t test.</p> <p>Results</p> <p>The mean Lp(a) concentration differed significantly between type 2 diabetic patients and the Control subjects (18.7 (5.8) mg/dl vs 23 (6.8) mg/dl, 0.00001). Similarly, the prevalence of high LP (a) levels in type 2 DM patients was significantly higher than that of the Control subjects (12.5% vs 4%, p-0.019). The mean levels of the lipid profile parameters (TCHOL, LDL-C, TG, LDL/HDL) and CRP were significantly higher in DM patients than in the Control subjects. The mean LP (a) levels were comparable in both sexes and in DM subjects with and without hypertension. TG was the only parameter that differed significantly between subjects with elevated Lp (a) levels and those with normal Lp (a) levels. There was a significant positive correlation (r) between Lp(a) levels and TG, LDL-C. TCHOL, LDL/HDL and uric acid. No association was found between Lp(a) and clinical parameters such as age and anthropometric indices.</p> <p>Conclusion</p> <p>We have showed that Lp (a), CRP and other CVS risk factors cluster more in patients with DM than non DM patients. Serum Lp (a) levels are not associated with anthropometric and glycaemic indices.</p
- âŚ