269 research outputs found

    Measuring antibody coatings on gold nanoparticles by optical spectroscopy

    Get PDF
    The adsorption of antibodies onto gold nanoparticles to make gold–antibody conjugates is finding application in multiple areas. Gold–antibody conjugates for use in malaria diagnostics were prepared and a method of characterisation that can be applied to any gold–protein conjugate was developed. When protein adsorbs onto a gold nanoparticle, it changes the local refractive index and so changes the surface plasmon resonance of the gold particle. Changes to the surface plasmon resonance manifest in the absorbance spectrum of the conjugates. This was measured by optical spectroscopy and relatively simple equations to convert spectral shifts to predictions of the protein layer thickness and mass coverage are presented. As with most protein adsorption reported in the literature, the results showed the protein adsorption to depend on antibody concentration, reaching a plateau at around 1 μg ml−1. The coverage was estimated to be approximately 2–3 mg m−2 and the coating thickness estimates were approximately 10 nm, which is consistent with active antibody. The results suggested more antibody was used in conjugate preparation than was necessary for complete coverage of the gold. This excess antibody could bind to the target antigen to reduce malaria test sensitivity. A key advantage of this characterisation method is that it is sufficiently simple to be used for quality control of conjugate production and the equations presented can be applied to other coatings on gold nanoparticles

    Solidification of nanosuspensions for the production of solid oral dosage forms and inhalable dry powders

    Get PDF
    INTRODUCTION: Nanosuspensions combine the advantages of nanotherapeutics (e.g. increased dissolution rate and saturation solubility) with ease of commercialisation. Transformation of nanosuspensions to solid oral and inhalable dosage forms minimises the physical instability associated with their liquid state, enhances patient compliance and enables targeted oral and pulmonary drug delivery. AREAS COVERED: This review outlines solidification methods for nanosuspensions. It includes spray and freeze drying as the most widely used techniques. Fluidised-bed coating, granulation and pelletisation are also discussed as they yield nanocrystalline formulations with more straightforward downstream processing to tablets or capsules. Spray-freeze drying, aerosol flow reactor and printing of nanosuspensions are also presented as promising alternative solidification techniques. Results regarding the solid state, in vitro dissolution and/or aerosolisation efficiency of the nanocrystalline formulations are given and combined with available in vivo data. Focus is placed on the redispersibility of the solid nanocrystalline formulations, which is a prerequisite for their clinical application. EXPERT OPINION: A few solidified nanocrystalline products are already on the market and many more are in development. Oral and inhalable nanoparticle formulations are expected to have great potential especially in the areas of personalised medicine and delivery of high drug doses (e.g. antibiotics) to the lungs, respectively

    Preparation of respirable nanoparticle agglomerates of the low melting and ductile drug ibuprofen: impact of formulation parameters

    Get PDF
    Ductile and low melting point drugs exhibit challenging behaviour during both particle size reduction and spray drying as considerable amount of heat is involved in both processes. In this study, a systematic approach was employed to understand the preparation and in-vitro performance of respirable nanoparticle agglomerates by coupling wet milling and spray drying for ibuprofen, which is a drug with a low melting point and challenging mechanical properties. Wet milling in the presence of two stabilizers differing in their thermal properties and subsequent spray drying of the suspensions were employed after the addition of mannitol and/or leucine. The effects of the stabilizer type and the amounts of mannitol (matrix former) and leucine (dispersibility enhancer), on the yield of the process, the particle size, the redispersibility (i.e. reformation of nanoparticles upon rehydration) and the aerosolization (fine particle fraction, FPF%) of the nanoparticle agglomerates were evaluated using standard least squares model and a 23 full factorial design (3 factors at 2 levels plus four centre points). All factors investigated were found to have a significant effect on the yield of nanoparticle agglomerates (p < 0.05). The size of the nanoparticle agglomerates was mainly dependent on the leucine to drug ratio and the type of stabilizer (p < 0.05), while mannitol to drug ratio was the only significant factor affecting the redispersibility of the formulations (p < 0.05). The FPF%, determined using a fast screening impactor, was found to be dependent on both the leucine and mannitol to drug ratio (p < 0.05). This study demonstrates the successful preparation of respirable nanoparticle agglomerates of low melting point and ductile ibuprofen and the usefulness of the design of experiments as a tool to understand the impact of the formulation parameters on their fabrication and in-vitro performance

    A New Era of Pulmonary Delivery of Nano-antimicrobial Therapeutics to Treat Chronic Pulmonary Infections

    Get PDF
    Pulmonary infections may be fatal especially in immunocompromised patients and patients with underlying pulmonary dysfunction, such as those with cystic fibrosis, chronic obstructive pulmonary disorder, etc. According to the WHO, lower respiratory tract infections ranked first amongst the leading causes of death in 2012, and tuberculosis was included in the top 10 causes of death in low income countries, placing a considerable strain on their economies and healthcare systems. Eradication of lower respiratory infections is arduous, leading to high healthcare costs and requiring higher doses of antibiotics to reach optimal concentrations at the site of pulmonary infection for protracted periods. Hence direct inhalation to the respiratory epithelium has been investigated extensively in the past decade, and seems to be an attractive approach to eradicate and hence overcome this widespread problem. Moreover, engineering inhalation formulations wherein the antibiotics are encapsulated within nanoscale carriers could serve to overcome many of the limitations faced by conventional antibiotics, like difficulty in treating intracellular pathogens such as mycobacteria spp. and salmonella spp., biofilmassociated pathogens like Pseudomonas aeruginosa and Staphylococcus aureus, passage through the sputum associated with disorders like cystic fibrosis and chronic obstructive pulmonary disorder, systemic side effects following oral/parenteral delivery and inadequate concentrations of antibiotic at the site of infection leading to resistance. Encapsulation of antibiotics in nanocarriers may help in providing a protective environment to combat antibiotic degradation, confer controlled-release properties, hence reducing dosing frequency, and may increase uptake via specific and non-specific targeting modalities. Hence nanotechnology combined with direct administration to the airways using commercially available delivery devices, is a highly attractive formulation strategy to eradicate microorganisms from the lower respiratory tract, which might otherwise present opportunities for multi-drug resistance

    Preparation of theophylline inhalable microcomposite particles by wet milling and spray drying: the influence of mannitol as a co-milling agent

    Get PDF
    Inhalable theophylline particles with various amounts of mannitol were prepared by combining wet milling in isopropanol followed by spray drying. The effect of mannitol as a co-milling agent on the micromeritic properties, solid state and aerosol performance of the engineered particles was investigated. Crystal morphology modelling and geometric lattice matching calculations were employed to gain insight into the intermolecular interaction that may influence the mechanical properties of theophylline and mannitol. The addition of mannitol facilitated the size reduction of the needle-like crystals of theophylline and also their assembly in microcomposites by forming a porous structure of mannitol nanocrystals wherein theophylline particles are embedded. The microcomposites were found to be in the same crystalline state as the starting material(s) ensuring their long-term physical stability on storage. Incorporation of mannitol resulted in microcomposite particles with smaller size, more spherical shape and increased porosity. The aerosol performance of the microcomposites was markedly enhanced compared to the spray-dried suspension of theophylline wet milled without mannitol. Overall, wet co-milling with mannitol in an organic solvent followed by spray drying may be used as a formulation approach for producing respirable particles of water-soluble drugs or drugs that are prone to crystal transformation in an aqueous environment (i.e. formation of hydrates)

    A new era of pulmonary delivery of nano-antimicrobial therapeutics to treat chronic pulmonary infections

    Get PDF
    Pulmonary infections may be fatal especially in immunocompromised patients and patients with underlying pulmonary dysfunction, such as those with cystic fibrosis, chronic obstructive pulmonary disorder, etc. According to the WHO, lower respiratory tract infections ranked first amongst the leading causes of death in 2012, and tuberculosis was included in the top 10 causes of death in low income countries, placing a considerable strain on their economies and healthcare systems. Eradication of lower respiratory infections is arduous, leading to high healthcare costs and requiring higher doses of antibiotics to reach optimal concentrations at the site of pulmonary infection for protracted period. Hence direct inhalation to the respiratory epithelium has been investigated extensively in the past decade, and seems to be an attractive approach to eradicate and hence overcome this widespread problem. Moreover, engineering inhalation formulations wherein the antibiotics are encapsulated within nanoscale carriers could serve to overcome many of the limitations faced by conventional antibiotics, like difficulty in treating intracellular pathogens such as mycobacteria spp. and salmonella spp., biofilm-associated pathogens like Pseudomonas aeruginosa and Staphylococcus aureus, passage through the sputum associated with disorders like cystic fibrosis and chronic obstructive pulmonary disorder, systemic side effects following oral/parenteral delivery and inadequate concentrations of antibiotic at the site of infection leading to resistance. Encapsulation of antibiotics in nanocarriers may help in providing a protective environment to combat antibiotic degradation, confer controlled-release properties, hence reducing dosing frequency, and may increase uptake via specific and non-specific targeting modalities. Hence nanotechnology combined with direct administration to the airways using commercially available delivery devices, is a highly attractive formulation strategy to eradicate microorganisms from the lower respiratory tract, which might otherwise present opportunities for multi-drug resistance

    Neural correlates of object identity and reward outcome in the sensory cortical-hippocampal hierarchy:coding of motivational information in perirhinal cortex

    Get PDF
    Neural circuits support behavioral adaptations by integrating sensory and motor information with reward and error-driven learning signals, but it remains poorly understood how these signals are distributed across different levels of the corticohippocampal hierarchy. We trained rats on a multisensory object-recognition task and compared visual and tactile responses of simultaneously recorded neuronal ensembles in somatosensory cortex, secondary visual cortex, perirhinal cortex, and hippocampus. The sensory regions primarily represented unisensory information, whereas hippocampus was modulated by both vision and touch. Surprisingly, the sensory cortices and the hippocampus coded object-specific information, whereas the perirhinal cortex did not. Instead, perirhinal cortical neurons signaled trial outcome upon reward-based feedback. A majority of outcome-related perirhinal cells responded to a negative outcome (reward omission), whereas a minority of other cells coded positive outcome (reward delivery). Our results highlight a distributed neural coding of multisensory variables in the cortico-hippocampal hierarchy. Notably, the perirhinal cortex emerges as a crucial region for conveying motivational outcomes, whereas distinct functions related to object identity are observed in the sensory cortices and hippocampus

    Using detergent to enhance detection sensitivity of African trypanosomes in human CSF and blood by Loop-Mediated Isothermal Amplification (LAMP)

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; The loop-mediated isothermal amplification (LAMP) assay, with its advantages of simplicity, rapidity and cost effectiveness, has evolved as one of the most sensitive and specific methods for the detection of a broad range of pathogenic microorganisms including African trypanosomes. While many LAMP-based assays are sufficiently sensitive to detect DNA well below the amount present in a single parasite, the detection limit of the assay is restricted by the number of parasites present in the volume of sample assayed; i.e. 1 per µL or 103 per mL. We hypothesized that clinical sensitivities that mimic analytical limits based on parasite DNA could be approached or even obtained by simply adding detergent to the samples prior to LAMP assay.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology/Principal Findings:&lt;/b&gt; For proof of principle we used two different LAMP assays capable of detecting 0.1 fg genomic DNA (0.001 parasite). The assay was tested on dilution series of intact bloodstream form Trypanosoma brucei rhodesiense in human cerebrospinal fluid (CSF) or blood with or without the addition of the detergent Triton X-100 and 60 min incubation at ambient temperature. With human CSF and in the absence of detergent, the LAMP detection limit for live intact parasites using 1 µL of CSF as the source of template was at best 103 parasites/mL. Remarkably, detergent enhanced LAMP assay reaches sensitivity about 100 to 1000-fold lower; i.e. 10 to 1 parasite/mL. Similar detergent-mediated increases in LAMP assay analytical sensitivity were also found using DNA extracted from filter paper cards containing blood pretreated with detergent before card spotting or blood samples spotted on detergent pretreated cards.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions/Significance:&lt;/b&gt; This simple procedure for the enhanced detection of live African trypanosomes in biological fluids by LAMP paves the way for the adaptation of LAMP for the economical and sensitive diagnosis of other protozoan parasites and microorganisms that cause diseases that plague the developing world.&lt;/p&gt
    • …
    corecore