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Neural correlates of object identity and reward outcome
in the sensory cortical-hippocampal hierarchy: coding of
motivational information in perirhinal cortex
Julien Fiorilli 1, Pietro Marchesi1, Thijs Ruikes1, Gerjan Huis in ‘t Veld1, Rhys Buckton1, Mariana D. Quintero1, Ingrid Reiten2,

Jan G. Bjaalie 2, Cyriel M.A. Pennartz1,*

1Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands,
2Institute of Basic Medical Sciences, University of Oslo, NO-0316 Oslo, Norway

*Corresponding author: Email: c.m.a.pennartz@uva.nl

Neural circuits support behavioral adaptations by integrating sensory and motor information with reward and error-driven learning
signals, but it remains poorly understood how these signals are distributed across different levels of the corticohippocampal hierarchy.
We trained rats on a multisensory object-recognition task and compared visual and tactile responses of simultaneously recorded
neuronal ensembles in somatosensory cortex, secondary visual cortex, perirhinal cortex, and hippocampus. The sensory regions
primarily represented unisensory information, whereas hippocampus was modulated by both vision and touch. Surprisingly, the
sensory cortices and the hippocampus coded object-specific information, whereas the perirhinal cortex did not. Instead, perirhinal
cortical neurons signaled trial outcome upon reward-based feedback. A majority of outcome-related perirhinal cells responded to a
negative outcome (reward omission), whereas a minority of other cells coded positive outcome (reward delivery). Our results highlight
a distributed neural coding of multisensory variables in the cortico-hippocampal hierarchy. Notably, the perirhinal cortex emerges as
a crucial region for conveying motivational outcomes, whereas distinct functions related to object identity are observed in the sensory
cortices and hippocampus.

Key words: multisensory; object recognition; visual cortex; barrel cortex; cross-modal.

Introduction
Object recognition serves animals to guide themselves to goals
of interest, such as locations with food. Multisensory object rep-
resentations are thought to be encoded by a hierarchically orga-
nized, cortical network in which unisensory information is ini-
tially processed in distributed unimodal regions and converges in
higher order areas. The perirhinal cortex (PER) is often considered
to be a central hub in this hierarchy, because of its reciprocal
anatomical connections with, among others, the temporal asso-
ciation cortex, somatosensory whisker system, and visual cortex
(Alvarez and Squire 1994; Murray and Bussey 1999; Eichenbaum
2000; Agster and Burwell 2009; Jacklin et al. 2016; Fiorilli et al.
2021). Lesion studies in rats that spontaneously explored their
environment demonstrated that PER damage causes impairments
in zero-delay recognition for objects having complex visual fea-
ture conjunctions and in cross-modal object recognition (Bartko
et al. 2007; Albasser et al. 2015; Reid et al. 2012). As a first
hypothesis to be considered here, it has been proposed that PER
contributes to object (or item) perception in addition to mem-
ory (Dickerson and Eichenbaum 2010), especially when multiple
object features or modalities have to be processed. Despite the
lesion evidence, no electrophysiological studies have thus far

compared the influence of sensory inputs during object recogni-
tion between the PER, the sensory neocortical regions and hip-
pocampus (HPC) of rodents.

A second hypothesis on the functionality of PER implies this
structure in the coding of task and reward contingencies by
interacting with interconnected structures involved in planning,
motivation, and affect, such as the medial prefrontal cortex,
orbitofrontal cortex, and amygdala (Agster et al. 2016, Kajiwara
et al. 2003; Burwell et al. 1995; Fiorilli et al. 2021). Studies in mon-
keys showed that the PER carries information about cued reward
schedules rather than the physical properties of sensory cues
themselves, such as brightness (Liu and Richmond 2000; Eradath
et al. 2015). In rats, PER neurons have been shown to code for
spatial segments of a task environment (Bos et al. 2017), but also
to represent behavioral choices on a fine time-scale during spatial
responses on a touch screen (Ahn and Lee 2015). Spatial correlates
in PER are generally not reported in the absence of spatial task
constraints (e.g. when foraging in an open field arena; Burke et al.
2012; Deshmukh et al. 2012), suggesting that spatial-navigational
correlates in PER may arise only when paired with reward pre-
diction. Despite the available evidence for a contribution of PER
to multisensory processing and value-based coding, it remains
debatable whether sensory and value-based representations are
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both present in PER, and how PER compares to other regions in
the cortico-hippocampal hierarchy.

The current study aimed to quantify sensory-evoked (tactile
and visual) firing responses in the PER during multisensory
object sampling, as well as firing-rate modulation by choice
behavior and reward delivery. We additionally set out to compare
these neural representations in PER to those simultaneously
recorded from other regions of the cortico-hippocampal system.
We devised a reward-driven multisensory object recognition task
in which rats repeatedly discriminated between 2 familiar, solid
3D objects via whisker touch and/or vision. Object sampling
enabled the rats to make a spatial choice to approach 1 of 2
goal locations, each of which was associated with one of the
objects and yielded reward when correctly chosen. During this
task, we simultaneously recorded ensemble activity with single-
cell resolution from primary somatosensory barrel cortex (S1BF),
secondary visual cortex (V2L), PER, and HPC (including CA1, CA3,
and DG).

Our findings unveiled unique functional contributions of the
PER in comparison to the sensory cortex and HPC. First, object
representations were absent in PER even though neural ensem-
bles S1BF, V2L, and HPC carried information about object identity.
We additionally report a much higher sensitivity to tactile and
visual inputs for HPC and the sensory cortical regions compared
with PER. Second, representations in PER maximally differentiated
between the choice sides (left vs. right) when rats kept their
snout poked into 1 of 2 reward ports, indicating a specific role in
coding of expected reward for a given goal location. Third, whereas
modulations by trial outcome in V2L, S1BF, and HPC correlated to
different post-reward behaviors (reward consumption vs. exiting
the reward port), outcome-related responses in PER occurred
earlier, viz. when rats started to sample for reward delivery by
licking, and were mainly correlated with trial outcome (i.e. reward
delivery or omission).

Population activity in both sensory cortices contained sensory-
specific information on the object, whereas the HPC sustained
modality-invariant representations of objects after reward con-
sumption. In contrast, PER cells anticipated arrivals at a given goal
location and represented unexpected trial outcome, suggesting a
prominent contribution of PER in encoding motivational value of
events, rather than a general role in object perception and recog-
nition. These findings collectively reveal a dissociation within the
cortico-hippocampal system, differentiating PER from the other
recorded brain regions.

Materials and methods
Subjects
Data were collected from 4 28- to 44-wk-old male Lister Hooded
rats (obtained from Envigo, The Netherlands). Rats were socially
housed under a reversed day/night cycle (lights off: 8:00 AM, lights
on: 8:00 PM) and food restricted to maintain their body weight at
85% of the ad libitum growth curves of Harlan, taking Rolls and
Rowe (1979) as a reference. All experiments were performed in
accordance with the National Guidelines on Animal Experiments
and were approved by the Animal Experimentation Committee of
the University of Amsterdam.

Apparatus
Behavioral training was performed in a darkened room on an ele-
vated T-shaped platform (30W × 35L × H60 cm, 60 cm from floor)
with a reward well for sucrose solution (15%) delivery at opposed
sides (30 cm distance; Fig. 1a). The training apparatus was fully

automated with custom-written MATLAB code on a Windows PC,
and hardware was controlled through a Field Programmable Gate
Array and an Arduino. A pneumatic door prevented access to
the objects during the intertrial interval (ITI). Nose pokes into
reward ports (4W × 4H cm) and lick events were detected by
2 different IR phototransistors in each reward port (Fig. S2e).
Reward was delivered upon nose poke entry by a syringe pump
(Razel, USA). The on- and offset of the object sampling epoch
were estimated during the task by phototransistors in front of
the object, but more precisely defined for analysis afterwards by
means of video tracking. The 2 reward ports were located on either
side of the sampling platform, facing each other at a distance
of 30 cm. To analyze object-sampling behavior, an infrared high-
speed camera was mounted 40 cm above the rat’s head (500
frames/s; M3 Camera from Integrated Design Tools, USA, with
50 mm/F0.95 lens, Navitar, USA; Using MotionStudio software,
Integrated Design Tools, USA). Object sampling, detected with
phototransistors and infrared beams, triggered the high-speed
camera to write 900 video frames for 1.8 s to the PC. Background
illumination of diffuse IR light was reflected from 5 LED arrays
(Sygonix, 310 mA, wavelength: 850 nm) to the camera by a mirror
located underneath the sampling region. White semitransparent
Perspex acrylic was used to diffuse the IR light coming from the
side before being reflected to the camera. A second infrared cam-
era (SONY EVI-D100P), placed 150 cm above the platform, allowed
the experimenter to monitor the animal’s overall behavior on the
elevated platform. A single IR light (Sygonix, 310 mA, wavelength:
850 nm) mounted 40 cm above the platform weakly illuminated
the maze for recording images on this camera.

The 3D objects consisted of plastic LEGO configurations, which
were mounted on black H11 × W20 cm rectangular acrylic back-
ground sheets with hot melt adhesive. Objects were randomly
presented using a rotating stepper motor at the start of each ITI.
The objects were randomly rotated before bringing the objects
into place for an upcoming trial, in order to prevent that sounds
related to stepper motor rotations would enable the animal to
predict the upcoming object and associated reward location. In
visual and multisensory trials, an object-focused white LED light
was triggered upon object sampling. In tactile and multisensory
trials, the objects were presented at a gap distance of 15 to 16 cm
away from the elevated platform, which limited object contact
to whiskers only (at this distance the object was typically at a
distance of 0.5 to 3.5 cm from the snout during tactile sampling,
see also Harris et al. 1999). In visual trials and catch trials, objects
were presented further away (22 to 23 cm from platform), which
made it impossible for the rat to reach the object with its whiskers.
Tactile object sampling was thus controlled by the gap distance to
the object, and visual sampling was controlled by light illumina-
tion in an otherwise dark room. Computers, acquisition systems,
and experimenter were situated in a separate room from the
darkened experimental room to prevent light leakage.

Behavioral procedure
We recorded 4 male Lister Hooded rats that were trained on a 2-
alternative forced-choice object discrimination task. To correctly
perform a trial, rats had to sample 1 of 2 possible objects, retract
from the object-sampling port, and subsequently make a choice
by nose-poking into 1 of 2 reward ports, placed on the left and
right side of the object-sampling port (Fig. 1). The object-side
associations were counterbalanced over the 4 rats, but the objects
remained unaltered. A trial started after an ITI of 12 s, after
which a pneumatic door opened (Fig. 1a) and access to the object
became possible. The door closed when the rat initiated a nose
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Fig. 1. Performance and single trial examples of the multisensory object discrimination task. a) Schematic overview of the reward-driven discrimination
task. Rats were trained to associate 2 objects with opposed reward sides. Different trial types were presented randomly within a session and allowed
object sampling either by vision (V), touch (T), or by both senses combined (VT). b) Example trials with object approach and time course of whisking
behavior. Rats started whisking during the approach toward the object. In tactile and multisensory trials, rats could reach and palpate the object with
its whiskers. In visual and multisensory trials, an LED light illuminated the object when the snout was in front of the object. The lower row displays the
snout distance from the object over time, during the approach to and withdrawal from the object. Touch epochs are indicated in red and illumination in
yellow. c) Example frame taken from a high-speed video during tactile object sampling, with overlaid whisker and snout tracking. d) Rats performed the
task above chance-level in all trial types, taking the catch trials with no object information (neither visual nor tactile) as the chance-level comparison.
Performance in multisensory trials was significantly higher than in visual and tactile trials (P < 0.05, 1-way ANOVA [F = 31.376, P < 0.000] with post
hoc Tukey test). Bars indicate 95% CIs. e) Task performance over amount of touches during object sampling. Multisensory sampling improved task
performance regardless of the number of touch epochs. This indicates that the increased performance in multisensory trials is not the result of a more
elaborate tactile sampling strategy in the presence of light. Lines are linear fits and shaded areas indicate the 95% CI.
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poke in one of the reward ports. The modality (visual, tactile, or
multisensory) was selected randomly per trial, but was repeated
after an incorrect response to discourage any preferred modality
bias during a session. Rats were implanted and recorded when
they reached a stable performance of at least 70% correct for each
trial type during 7 consecutive days.

Surgical procedures and electrophysiology
Recording areas were targeted in the right hemisphere with a
custom-built microdrive that contained 36 individually movable
tetrodes (Nichrome wire, California Fine Wire, diameter: 13 μm,
gold-plated to an impedance 300 to 800 kΩ at 1 kHz), 4 of which
were used as reference (Lansink et al. 2007; Bos et al. 2017). For 2
out of 4 rats, tetrodes were collected in 4 bundles, each of which
targeted toward PER, dorsal HPC (CA1, CA3, and DG), V2, and S1BF
(PER area 35/36; coordinates: −6.0 AP, 6.5 DV, 7.0 ML; dorsal CA1
and CA3 coordinates: −3.48 AP, 2.0 ML, 2.5 DV; V2L coordinates:
−6.0 AP, 2.8 DV, 5.8 ML; and S1BF coordinates: −3.0 AP, 5.0 ML, 2.8
DV). For the other 2 rats, the HPC bundle was omitted; tetrodes
from this bundle were appended to the V2L and PER bundles. Rats
received preoperative, subcutaneous injections of the analgesics
buprenorphine (Buprecare, 0.04 mg kg−1) and meloxicam (Meta-
cam, 2 mg kg−1) as well as the antibiotic enrofloxacin (Baytril,
5 mg kg−1). Anesthesia was induced with 3.0% isoflurane, and
was kept on 1.0% to 2.0% isoflurane during surgery. A heating pad
was used to maintain body temperature. Lidocaine was applied
directly on the periosteum for additional, local analgesia before
exposing the skull. The skull surface was thoroughly cleaned with
3% hydrogen peroxide solution, and washed thrice with saline.
Six screws, from which one served as ground (occipital bone),
were inserted in the skull to improve the stability of the implant.
After craniotomy and durotomy were performed, the drive was
positioned using a stereotaxic holder. The craniotomy was then
sealed using silicone adhesive (Kwik-Sil), and dental cement (Kerr-
total adhesive Opti-bond Solo Plus and 3 M Unitek Transbond) was
applied to anchor the drive on the skull and screws (Lansink et al.
2007; Bos et al. 2017). Postoperative care included a subcutaneous
injection of meloxicam on the 2 days following surgery, and Baytril
1 day after surgery. From the 3rd day after surgery, tetrodes were
gradually lowered toward their target regions on a daily basis.
Recording locations were estimated based on the number of turns
to the tetrode guiding screws, and by assessing the Local Field
Potential, sharp wave ripples in CA1 and CA3, and spike signals
during signal acquisition.

Neurophysiological signals were continuously acquired at a
sampling rate of 32 kHz with a Digital Lynx SX 144 channel
system (Bozeman, MT) and high pass filtered at 0.1 Hz. The
signals were pre-amplified with a headstage before being fed
through an automated commutator (Neuralynx). Spike detection
and sorting were performed offline using Klusta and manually
curated using Phy GUI (Rossant et al. 2016, also for optimized spike
detection and clustering parameters). Clusters were included as
units based on their spike waveforms, autocorrelation and sta-
bility over time. A unit was considered a single-unit if <0.5%
of its spikes occurred in the refractory period (1.2 ms) and its
isolation distance to other spike clusters was above 5. Only cells
with an average firing rate higher than 0.5 Hz during trials (8 s
pre- to 5 s post-poke for reward) were included in single-unit
analysis. Units that passed the above-mentioned criteria, but no
other cases, were considered single units in the analysis. Spiking
activity was aligned to events of interest and then convolved using
an Alpha kernel (sigma = 100 ms, step = 10 ms), unless specified
differently.

Histology and anatomic registration of tetrode
locations
On the final recording day, electrolytic lesions were made at the
tip of each tetrode by passing current (18 uA for 2 s) through 2
leads of each tetrode. Approximately 24 h after lesioning, animals
were deeply anesthetized with Nembutal (sodium pentobarbi-
tal, 60 mg ml−1, 1.0 mL intraperitoneal; Ceva Sante Animale,
Maassluis, the Netherlands) and transcardially perfused with a
0.9% NaCl solution, followed by a 4% paraformaldehyde solu-
tion (pH 7.4, phosphate-buffered). After postfixation, transversal
sections of 40 to 50 μm were cut using a vibratome or sliding
microtome and stained with Cresyl Violet to reconstruct tetrode
tracks and localize their end-points. To allow direct comparison of
recording regions between rats, we extracted spatial coordinates
for all tetrode locations after registering the histological section
images to the Waxholm Space Atlas of the Sprague Dawley rat
Brain v3 (Research Resource Identifier [RRID]: SCR_017124; Papp
et al. 2014; Bjerke et al. 2018) using the QuickNII software (RRID:
SCR_016854; Puchades et al. 2019).

Video tracking
We tracked whisker touches, snout, and global position of the
whisker array at either side of the snout, by training DeepLab-
Cut (DLC; Mathis et al. 2018) on 548 video frames originating
from 15 different sessions (n = 4 rats). Video frames for manual
annotations of head and whisker positions were picked from
different sessions by k-means clustering based on frame appear-
ances (Mathis et al. 2018). This ensured that labeling was per-
formed on frames that looked different. We additionally hand-
picked 260 frames from sessions that varied in snout position,
sharpness, illumination, and magnification. For quantification
of whisking behavior, we tracked the rostral, caudal, and mid-
line of the whisker array at either side of the snout. We veri-
fied the tracking accuracy by (i) computing the median distance
between tracked point and real annotated point (Mathis et al.
2018), (ii) plotting the whisker angles, head angles, and moments
of touch, and verifying that these followed the expected rhyth-
micity and spatial dimensions (rats whisk/palpate at a frequency
of ∼8 to 20 Hz; Berg and Kleinfeld 2003; Mitchinson et al. 2007;
Sachdev et al. 2003), and (iii) visually inspecting videos with over-
laid tracked whisker angles, tracked snout, and tracked touches
(S2a to c, SI Video). Because the timing of individual whisk touches
was especially important to us, we additionally manually labeled
all individual video frames from 5 sessions as having a whisker
touch in it or not. Comparisons between DLC-based whisk touches
and manual whisk touches revealed a high degree of overlap
(Fig. S2d).

Lick-rate analysis
To quantify the behavioral changes occurring in response to
reward delivery, we computed a separate lick-PETH for rewarded
and unrewarded nose pokes into the reward port (Fig. 9a). Based
on this licking behavior, we identified an epoch in which rats had
started to sample for the reward in 95% of the trials (measured by
means of the first lick after nose poke entry). We identified this
epoch as the “Initial Outcome Period” (IOP), because rats started
to exit the nose poke site upon omitted reward delivery only
after this point. Thus, significant outcome coefficients later than
this epoch could also be explained by behavioral changes in lick
patterns and poke behavior following reward sampling, whereas
modulations within this epoch could not.
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Light and touch onset modulation indices
We quantified responses to light onsets by comparing average
firing rates during object sampling between visual, tactile, and
multisensory trials. Here, we restricted the analysis to a response
window of 200 ms after the start of object sampling, thereby
including the light and tactile onsets and limiting influences
related to retraction movements. For every neuron, we used the
area under the receiver operating characteristic curve (AUROC) to
measure if sensory onsets from a given modality evoked higher
firing rates compared with when this input was absent (e.g. for
light onset responses we asked if VT > T and if V > T). Statistical
significance of sensory differentiation was assessed by 1000 per-
mutations of the trial modality labels to obtain a distribution of
surrogate indices. AUROC values were considered to be significant
for the tested modality when they fell above the one-sided 95%
confidence interval (CI) of the surrogate distribution and the
corresponding neurons were then considered to be modulated by
the tested modality (see Fig. 3a for an example of visual mod-
ulation). For all cells that were significantly responsive to light
onset, we additionally quantified tactile modulations of the light
onset responses by contrasting visual responses with combined
touch (VT) to visual responses in absence of touch (V). A cell
was considered to be suppressed or enhanced when its AUROC
values fell, respectively, below or above the 2-sided 95% CI of the
surrogate distribution.

Responses to touch were quantified similarly as for light onset,
but AUROC values were now computed based on the average
firing rates within the full tactile sampling epoch in a given trial
(from the first touch to the last touch; Figs. 1a and 4a). Tactile
trials with <3 touches were excluded from the analysis.

To quantify very transient touch onset modulations, we iden-
tified clearly defined whisker touches of relatively long durations
(of both left and right whiskers combined). This was achieved
by selecting touch onsets for which at least 60% of the frames
in the subsequent 50 ms contained a touch. Additionally, touch
onsets were required to have a 50 ms pre-touch period with at
most 30% of video frames displaying a touch. We selected sessions
in which this procedure identified at least 30 touch onsets. For
every neuron, we next binned spikes in the 50 ms before each
touch onset (pre-touch) and after each touch onset (post-touch,
Fig. 4d). The touch-onset modulation (TOM) index consisted of
the AUROC values of pre-touch vs. post-touch spikes. We then
randomly permuted the pre-touch and post-touch labels 100
times per-touch, and recomputed the AUROC values to obtain
the null distribution. TOM index values were considered signifi-
cant when they fell outside the 95% confidence of the surrogate
distribution.

Object coding
For every neuron, firing rates were aligned to the start of sampling
and convolved as described earlier (see Surgical Procedures and
Electrophysiology). A GLM (see below) was used to disentangle
the contribution of choice side and object identity, separately for
visual and tactile trials. We restricted the significance estimation
to the first 0.5 s after the start of sampling as we assumed
that correlates of object identity would emerge during, or shortly
after object sampling and recognition measured by means of
whisker and snout tracking (for the object encoding over time,
see Fig. 5d). We additionally verified that cells with significant
object predictors also tended to have higher AUROC values for the
object identity compared with the choice side, computed over the
average firing rates from our analysis time window (see Results).

Population decoding
Because multiple units can contribute to a population code, we
included all manually curated units including those that did not
meet the criteria for single-units in the population decoding anal-
ysis (N units: S1BF = 203, V2L = 488, PER = 257, HPC = 307). Spikes
were grouped in 300 ms time bins, advanced with increments of
10 ms.

In the object decoding analysis within trial types, a random
forest classifier with 200 trees was trained to identify the object
within every unique combination of modality and choice side.
This was achieved by randomly selecting 3 trials with the same
choice side within a particular sensory modality. The accuracy
of classification was then evaluated over time using 3 × 3 cross-
validated predictions. We then computed the average classifi-
cation accuracies for both choice sides within a modality. This
process allowed us to derive an object population decoding accu-
racy within a specific modality while mitigating the influence
of the choice side at each time point. To account for variability,
this entire procedure was iterated 100 times, each time randomly
selecting trials and cells. Significance was assessed using 95% CIs
derived from decoding inaccuracies based on shuffled distribu-
tions.

Decoding of trial type (Fig. 6) was performed by randomly
drawing 2 trials for each combination of sensory modality, choice
side, and object identity out of each recording session, which
resulted in a total of 8 trial categories to classify (one example
of them being the tactile trials in which the rat sampled object
A, and chose the left reward port). Hundred cells were randomly
selected across all sessions available from all subjects. At each
time bin, we decoded the trial type from spiking activity of the
selected cells with a random forest classifier with 200 trees. To
prevent overfitting, we restricted each tree to maximally 4 splits,
and used a 3 × 3 cross-validation routine (Bos et al. 2019; Glaser
et al. 2020). This entire procedure was repeated 100 times, each
time randomly drawing trials and cells. Prediction accuracy for a
given trial type was scored within each trial subcategory using a
contingency matrix. For instance, the decoding accuracy for the
choice side was computed across all left and right choice trials
(Fig. 6d). Significance was assessed using 95% CIs derived from
decoding inaccuracies based on shuffled distributions. Object
population decoding across sensory modalities (Fig. 7) was per-
formed as described above, except that the classifier was trained
on only the neural activity derived from tactile trials. Subse-
quently, we examined the decoder’s ability to generalize across
sensory modalities by classifying objects based on neural activity
from the visual trials.

The pseudo-population decoding of left and right choice (Fig. 8)
based on linearly warped firing rates was performed similarly, but
now by randomly drawing 10 left tactile or visual and 10 right
tactile or visual trials out of each recording session (recording
sessions with fewer than 10 trials per type were excluded). For
selected cells and trials, firing rates were linearly warped to align
the moments of retraction and reward-site pokes to the median
event times computed across all sessions (median times were
computed separately for visual and tactile trials). The number
of splits per tree was not restricted for this analysis because
overfitting was less of a concern given the higher number of trials
across only 2 categories.

Generalized linear model
During object sampling or reward consumption, multiple vari-
ables may affect firing rates of individual cells. To disentangle
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the contribution of photic condition, choice (Left/Right), reward,
and object identity, we examined the linear relation between
each of these task variables and the neural responses with a
generalized linear model (GLM; Statsmodels toolbox). We used a
Poisson regression to approximate firing rate statistics (Fig. S5b).
Single-unit activity was aligned to the event of interest (start
sample or nose poke for reward, NPR) and convolved as described
earlier. The GLM was fitted to describe the relationship between
the binary trial variables and single-unit firing rate distributions
independently on each time point. Accuracy of the GLM model
was scored by predicting the firing rates of each cell for all trials
on each time point, based on the coefficients through cross-
validation, and by calculating the proportion of explained vari-
ance (R2 score) between predicted and actual firing rates (1.0 being
the highest possible score). We verified the accuracy of the model
fit by comparing R2 scores of time bins that had at least one
significant predictor to time bins without any significant predictor
contribution, as well as to time bins from a baseline epoch (−8 to
−3 s before the poke), or by comparison to chance-level accuracies
obtained by randomly permuting trial labels independently at
each time-bin 500 times (Fig. S5). Statistical significance of a
predictor at a given time point was determined with Z-statistics by
comparing the explained variance against a model fit in which the
tested predictor had no relation to the firing rates. P-values over
time for a given cell were corrected by the Benjamini–Hochberg
procedure.

Statistical significance of proportions of neurons
Statistical significance of cell proportions was determined accord-
ing to z-test for proportions:

Z = p̂ − p0√√√√ p0(1−p0)
n

Where p̂ is the observed proportion of significant cells during
an epoch of interest, and p0 the proportion of significant cells
during chance level distributions, n is the total number of cells.

Results
Behavioral results and multi-area
electrophysiology
We trained freely behaving rats (n = 4) on a multisensory 2-object
recognition task, in which solid objects had to be associated
with different choice sides in order to obtain reward. During a
given trial, object sampling was either possible by whisker pal-
pation, vision, or by both senses combined (Fig. 1a). After an ITI
(12 s), rats could sample an object, located a gap distance away
from the elevated platform. Whisker palpation was prevented in
visual trials by having a larger gap distance to the object, and
availability of visual object information was controlled with an
object-focused illumination in an otherwise darkened room. This
illumination was triggered when rats perched across the gap and
toward the object, forcing a similar pose and head-position across
the different trial types. Rats whisked in the air during all trials
(Fig. 1b and c; SI: Video), also when no tactile information was
available. The rats subsequently retracted their body from the
object-sampling port and turned to make a left or right nose poke,
where the correct choice depended on object identity. Pokes on
the correct object-associated side were rewarded with sucrose
delivery. An incorrect response led to an extended ITI (20 s)

without reward delivery. To verify that rats could not use odors or
sounds related to the automated object-presentation mechanism,
we also introduced catch trials. During these catch trials the
object-presentation mechanism remained active so that objects
were rotated into place for future presentation during the ITI, but
illumination was kept off and the object itself was out of whisker
reach. Rats were expected to perform around chance level for
these catch trials if they based their decision solely on visual or
tactile information. Rats learned to discriminate between objects
with an above-chance accuracy in all trial types, except for catch
trials (Fig. 1d; visual trials: T(27) = 14.80, P < 0.001, tactile trials:
T(27) = 16.33, P ≤ 0.001, multisensory trials: T(27) = 26.93, P < 0.001,
and catch trials: T(27) = 0.34, P = 1.00, 1-sample t-test, Bonferroni
corrected). Discrimination performance was significantly higher
in multisensory than unisensory trials, indicating that rats used
both visual and somatosensory information to guide their deci-
sions (Fig. 1d; multisensory vs. visual trials: P = 0.001; multisen-
sory vs. tactile trials: P = 0.034; 1-way ANOVA [F = 31.37, P < 0.001]
with post hoc Tukey test). Multisensory sampling improved task
performance regardless of the number of touches (Fig. 1e).

We simultaneously recorded the activity of neuronal ensem-
bles in multiple regions along the cortico-hippocampal hierar-
chy during 27 sessions from 4 well-trained rats. Each animal
was chronically implanted with a quaddrive that contained 36
tetrodes enabling simultaneous recording of single units from
S1BF (n = 91), V2L (n = 279), and PER (n = 191, areas 35/36, central-
caudal region; Fig. 2 and Table S1; Bos et al. 2017; Vinck et al. 2016).
In 2 of these animals, we additionally recorded from the dorsal
HPC (n = 179; subfields: CA1 = 59, CA3 = 88, DG = 32). Units in the
HPC were pooled across subfields for analysis, unless specified
differently.

Tactile and visual stimulation during object
sampling evokes neural activity in sensory
cortices and HPC, but not in PER
The PER is thought to be richly supplied with object information
from the different sensory cortices. We initially asked whether PER
neurons preferentially discharge during object sampling regard-
less of the sensory modality, as predicted by the hypothesis that
PER primarily subserves object perception. We subdivided behav-
ioral trials into an object sampling phase, a choice phase (marked
by locomotion away from the sampling port and left vs. right
turn), and a trial outcome phase initiated by an NPR. The sam-
pling period is marked by the initiation of object sampling up
to the start of locomotion toward the reward ports (defined by
means of high-speed video tracking). Because of the self-paced
nature of the task, these task phases had variable durations.
We therefore aligned the neural data by linearly warping the
firing rates between the start of sampling, the choice-initiation
moment (defined as the moment of retraction from the object),
and the time of the NPR. We found no preferential firing during
object sampling in PER (peak firing rate probability tested against
chance level of uniformly distributed events, PER probability:
0.067, Z = −3.06, P = 3.995, proportions z-test, Bonferroni corrected;
Figs. 2c and d and S3). Instead, PER cells preferentially discharged
following the NPR (PER probability: 0.294, Z = 9.79, P < 0.001, pro-
portions z-test, Bonferroni corrected; Figs 2c and e and S3). In con-
trast, most cells in sensory regions S1BF and V2L discharged most
strongly during the choice phase (S1BF probability: 0.40, Z = 5.65,
P < 0.001; V2L probability: 0.39, Z = 9.79, P < 0.001, proportions z-
test, Bonferroni corrected).

Under our first hypothesis, holding that the PER contributes to
complex perception by integrating multimodal object information
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Fig. 2. Simultaneous multi-area ensemble recordings from the cortico-hippocampal hierarchy during the object recognition and outcome phases of the
task. a1 to 2) 3D spatial registration of tetrode recording locations. a1) Overview of all recording locations mapped on the Waxholm space atlas, color-
coded per rat. Top-right schematic inset depicts the crude anatomical organization of the 4 recorded areas situated along the cortico-hippocampal
hierarchy. a2) Close-up views of target regions S1BF, V2L, PER, and HPC with marked recording locations. b) Simultaneously recorded spike trains from
S1BF, V2L, PER, and HPC single units during a visual trial. Units are ordered according to average firing rate and grouped per recording region. See panel
a) for color coding of brain regions. c) Overview of task-phase modulation in S1BF, V2L, PER, and HPC cells. The histograms indicate the percentage of
cells that discharged maximally on a given time point. The heatmaps are Z-scored firing rates of cells over time, which are linearly time-warped to
account for unequal durations in object sampling and response latencies. Cells are ordered by the moment of peak firing rate relative to sample onset.
The vertical lines represent the median time points derived from all trials, which were later used for the linear warping of firing rates. The light gray lines
correspond to the duration spanning from the initiation of object sampling to the point of retraction from the object. The sampling period is marked
by the initiation of object sampling up to the start of locomotion toward the reward ports. Red: NPR, directly followed by reward delivery in a correct
trial. d) Percentages of cells from a given area that preferentially discharged during object sampling. Bars are 95% CIs, dashed lines indicate chance
levels given homogeneously distributed events over time. Asterisks indicate significant above-chance percentages. S1BF: 11.8; V2L: 11.9; PER: 6.7; HPC:
9.3. e) Percentage of cells from a given area that preferentially discharged following the NPR, regardless of reward delivery, up to 1 s after poke (S1BF:
17.6%; V2L: 17.2%; PER: 28.1%; HPC: 11.3%). Bars indicate 95% CIs, ∗ for significantly higher percentages than uniformly distributed events (P < 0.05,
2-proportions z-test).

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/2/bhae002/7600388 by U

niversity of Am
sterdam

 user on 06 M
ay 2024



8 | Cerebral Cortex, 2024, Vol. 34, No. 2

(such that PER neurons are responsive to more than one modality),
we characterized neural responses during tactile, visual, and mul-
tisensory object sampling. Using AUROC analysis, we quantified
the proportion of cells significantly modulated by either light
onset or whisker–object contacts.

Neural responses to the illumination of the object were initially
quantified within the first 0.2 s after light onset. To mitigate
potential motor-related confounds associated with locomotion
and sampling behavior, responsiveness to light onset was defined
as an augmented firing rate in visual or multisensory trials com-
pared with tactile trials wherein no light was triggered during
object sampling behavior. This criterion was applied because the
sampling behavior between these trials was very similar, reducing
the likelihood of motor-related confounds. We found significant
proportions of cells in area V2L and HPC that were modulated dur-
ing visual object sampling (before the animals retracted from the
object; Fig. 3a to d; percentages of cells modulated by light onset
in absence of simultaneous tactile sampling: V2L: 39.0%, Z = 10.75,
P < 0.001; HPC: 13.7%, Z = 2.98, P = 0.010, and during simultaneous
visual and tactile sampling: V2L: 31.0%, Z = 8.84, P = < 0.001; HPC:
13.7%, Z = 2.98, P = 0.010, proportions z-test, Bonferroni corrected).
Responses to light onset were suppressed in multisensory tri-
als compared with visual-only trials in a significant proportion
of V2L cells (Fig. 3e; V2L suppressed: 10.9%, Z = 2.58, P = 0.020;
V2L enhanced: 4.4%, Z = 0.87, P = 0.780; HPC suppressed: 21.1%,
Z = 1.98, P = 0.095; HPC enhanced: 10.5%, Z = 1.14, P = 0.509, propor-
tions z-test, Bonferroni corrected). Individual cells in S1BF and PER
were not modulated by light onset (Fig. 3b to d; S1BF: 6.8%, Z = 0.60,
P = 1.00; PER: 5.9%, Z = 0.456, P = 1.00, proportions z-test, Bonferroni
corrected).

Next, we analyzed modulation of firing patterns by tactile
sampling on a relatively coarse time scale (from start of sampling
up to retraction, defined by means of high-speed video tracking
at 500 frames/s; see Fig. 4a and b, for example, cells). On this
time scale a significant proportion of S1BF and HPC neurons
responded to whisker touch (Fig. 4c; percentages of cells modu-
lated by touch in absence of light: S1BF: 19.3%, P = 0.016, Z = 2.87;
HPC: 28.1%, Z = 5.78, P < 0.000, and modulated when combined
with light: S1BF: 18.0%, Z = 2.65, P = 0.032; HPC: 29.5%, Z = 6.08,
P < 0.000, proportions z-test, Bonferroni corrected). We found no
marked responses to whisker touch in PER and V2L when tested
on this coarse time scale (percentages of cells modulated by
touch in absence of light: V2L: 10.2%, Z = 2.22, P = 0.152; PER: 6.1%,
Z = 0.41; P = 1.00, and modulated when combined with light: V2L:
7.7%, Z = 1.23, P = 0.873; PER: 2.4%, Z = −1.15, P = 1.00).

We additionally quantified responses to individual whisker–
object contacts by AUROC analysis of firing rate responses in
the first 50 ms after individual touches. At this fine time scale,
cells in S1BF were significantly modulated by touch, whereas cells
in other regions were not (Fig. 4d and e; S1BF: 22.2%, Z = 3.93,
P < 0.001; V2L: 5.0%, Z = 0.014, P = 1.00; PER: 5.3%, Z = 0.179, P = 1.00;
HPC: 2.7%, Z = −1.904, P = 1.00, proportions z-test, Bonferroni cor-
rected). Subdividing HPC cells into the different subregions of
origin (CA1, CA3, DG) did not reveal significantly different pro-
portions of responsive cells between subregions for touch or light
onsets (P = 1.00, proportions z-test, Bonferroni corrected); there-
fore, these HPC cells were pooled. The main result from these
analyses is that tactile and visual responses evoked at stimulus
onset—although expressed in S1BF (Fig. 4e) and V2L (Fig. 3d)—
do not emerge in PER when rats sampled objects through vision
and/or touch, despite the finding that such responses are, in fact,
expressed in HPC (Figs. 3d and 4c).

Neural correlates of object identity
The PER is sometimes considered a terminal area of the visual
cortical stream, involved in object (or item) perception and recog-
nition memory (Norman and Eacott 2004; Bussey and Saksida
2005; Bartko et al. 2007; Dickerson and Eichenbaum 2010). To
obtain reward during our task, the rats needed to sample and
recognize the objects by vision and touch. We first quantified how
object identity was represented by individual cells in the hierarchy
using a GLM that included choice side and object identity as
predictors. The GLM quantified the influence of both predictors
on neural responses over time, based on the instantaneous firing
rates during all trials, aligned on sample start. We did this sep-
arately for tactile, visual, and multisensory sampling, assuming
that neural representations may differ depending on the sensory
modality at hand. Cells were considered to be modulated by object
identity if the GLM object coefficient magnitude was larger than
what would be observed by chance, within 0.5 s after initiation
of object sampling. This epoch was chosen because high object
predictor magnitudes clustered during this epoch, and the choice
side predictor became dominant thereafter (Fig. 5). In short, object
identity was defined by the response distinguishing between 2
objects during the sampling behavior in a given modality, with the
potential confounding factor of choice side effectively eliminated
through regression analysis. V2L cells expressed significantly dif-
ferent responses depending on object identity during visual, but
not tactile sampling (Fig. 5d and f; visual: 9.2%, Z = 2.34, P = 0.04;
tactile: P = 1.00; proportions z-test, Bonferroni corrected). From
these object encoding V2L neurons, 69.8% preferentially fired in
response to object A, whereas the remaining cells preferentially
responded to object B. In contrast, S1BF, PER, and HPC cells were
not encoding the object identity during visual sampling behav-
ior at all (Fig. 5e and f, S1BF: 5.1%, Z = 0.05, P = 1.00; PER: 3.6%,
Z = −0.93, P = 1.00; HPC: 3.5%, Z = −0.96, P = 1.00). We did not find
above-chance proportions of cells that encoded objects during
tactile-only trials in any of the recorded regions (P > 0.05 for
all regions, proportions z-test, Bonferroni corrected). Additional
control analysis confirmed that V2L cells with significant GLM
object predictors tended to have higher AUROC values for object
identity than for choice side (T(618) = −5.16, P < 0.001; indepen-
dent t-test). We verified that object correlates did not emerge
later in time by applying the same analysis to a longer time
window (0.5 to 2 s post-sampling). Thus, whereas single V2L
cells coded object identity during visual object sampling, this
coding was surprisingly absent in single units recorded in PER
and HPC.

We additionally quantified if object information was repre-
sented through the collective activity of cell populations within a
specific area. We constructed pseudo-populations that consisted
of rate vectors from 100 neurons obtained from different sessions
for each area separately. A decoder was trained to classify the
object within each specific combination of modality and choice
side. The accuracy of classification was assessed over time
using cross-validated predictions. We subsequently computed the
average classification accuracies for the 2 choice sides within a
modality. This allowed us to obtain an object population decoding
accuracy within a given modality and eliminating the influence
of the choice side. In line with the single-unit GLM analysis
results, we found a population code for the object identity in V2L
during visual object sampling, but not during tactile sampling
(Fig. 6a, P < 0.05, tested against permutation-based surrogate
distribution). Conversely, neural populations in S1BF briefly coded
for the object identity after sampling onset only in the tactile
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Fig. 3. Visual responses of neurons recorded in all 4 areas during object sampling. a, b) Example cells modulated by light onset. Peristimulus time
histograms (PSTHs; top) and spike rasters (bottom) aligned on the start of object sampling are contrasting visual (blue), tactile trials (red), and multimodal
(purple) trials. Light onset responses were quantified across the 3 different sampling conditions to account for potential confounds related to modality-
specific sampling behavior. Multisensory trials are aligned to the light onset and the first touch in a trial is indicated by a green dot in the rasters.
Retraction moments are marked by a black dot. This color coding holds in a, b, f, and g. Vertical gray bar: time window used for analysis of light onset
modulation. a) Right side: observed AUROC values (red) for firing rate differences for the example V2L cell and trial modality label shuffled chance level
distributions (black). The values were measured by AUROC analysis on firing rates during the first 0.2 s after the light onset (gray shaded area). Cells
with an AUROC value above 95% CIs of the shuffled distribution were considered to be significantly responsive to light onset. This example cell was
modulated by light onset during tactile sampling (VT > T) as well as by light onset in absence of any whisker input (V > T). Tactile sampling suppressed
light onset responses (V > VT). b) Two other example cells modulated by light onset. c) Overview of AUROC values for light onset responses of all cells
per brain region. The majority of cells with significant AUROC values for light onset were observed in V2L, most often by responding to light onset in
multisensory trials (x axis, VT > T) as well as in visual trials (y axis; V > T; blue dots indicate cells significant for at least 1 of the 2 modality contrasts). d)
Percentage of cells per area which were modulated by light onset measured by AUROC analysis. Light onset was quantified by contrasting light onsets
with combined touch to trials with touch in darkness (VT > T: empty bars; S1BF: 6.8%; V2L: 34.0% PER 5.9%; HPC: 13.7%), or by contrasting light onsets
in absence of touch to trials with only touch (V > T; filled bars; S1BF: 8.1%; V2L: 30.9%; PER 6.7%; HPC: 13.7%). Black bars indicate 95% CIs. Asterisks
indicate that the percentage of significant cells was higher than chance, (P < 0.05, 2-proportions z-test). This holds in e, h, and j as well. e) Percentage of
light onset responsive cells in V2L and HPC that showed tactile modulations of the light onset response (S1BF and PER are not shown because of lack
of significant modulation, see d). For all cells that were significantly responsive to light onset (V > T), tactile modulation of the light onset response was
quantified by contrasting visual responses with combined touch (VT) to visual responses in absence of touch (V2L suppressed: 10.9%; V2L enhanced:
4.4%; HPC suppressed: 21.1%; HPC enhanced: 10.5%).

trials, but not in the visual trials (Fig. 6b, P < 0.05, tested against
permutation-based surrogate distribution). PER and HPC did not
represent object identity during the first 2 s following the start of
object sampling (Fig. 6c).

Neural representations of the object identity may not only
emerge upon initiating the object sampling, but might
additionally arise upon recalling object information later in the

trial. We therefore performed additional population decoding
analysis on firing rates aligned on 3 distinct time points. These
included the onset of object sampling, the decision moment of
the rat, and the onset of the object-associated NPR. The decision
moment was defined as the moment at which a rat stopped
sampling the object and initiated its choice toward the left or
right side (detected by high-speed video tracking of the snout).
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Fig. 4. Tactile responses of neurons recorded in all 4 areas during object sampling. a, b) Example cells modulated by tactile sampling. PSTHs (top) and
spike rasters (bottom) contrasting visual (blue), tactile trials (red), and multimodal (purple) trials. Multisensory trials are aligned to the light onset. The
first touch in a trial is indicated by a green dot in the rasters. Retraction moments are marked by a black dot. a) Right side: observed AUROC values (red)
for firing rate differences for the example S1BF cell and trial modality label shuffled chance level distributions (black). The values were measured by
AUROC analysis on firing rates during sampling, up to retraction from the object. Cells with an AUROC value above 95% CIs of the shuffled distribution
of the VT vs. V comparison were considered significantly responsive to tactile sampling because these trials had identical illumination conditions.
This example cell was modulated by tactile sampling regardless of the illumination (VT > V and T > V). Tactile responses were not modulated by the
light onset (T == VT). c) Percentage of cells per area showing firing-rate enhancement by touch onset under identical illumination conditions (VT > V:
empty bars: S1BF: 18.0%; V2L: 7.7%; PER: 2.4%; HPC: 29.5%) and under different illumination (T > V: filled bars; S1BF: 19.3%; V2L: 10.2%; PER: 6.11%; HPC:
28.1%), as measured by AUROC analysis on firing rates during sampling up to retraction from the object. Bars indicate 95% CIs. d) Spike times aligned to
example touches (red) from one example S1BF cell. Touch onset responses were measured for each cell by contrasting the 50 ms following each touch
onset (green background), with the 50 ms preceding the onset (red background). e) Percentage of cells per area that are modulated by touch onset in the
first 50 ms after touch onset (S1BF 22.2%; V2L 5.0% PER 5.0%; HPC 2.5%). Bars indicate 95% CIs.

The onset of the NPR is the moment at which rats entered their
snout in the reward port and received feedback on their choice
through reward delivery for a correct response or the omission
of reward for an incorrect choice. Neural populations in higher-
order regions such as the PFC and the HPC have been shown
to represent task variables in an abstract manner, emphasizing
their ability to generalize across diverse cognitive contexts
and conditions. We therefore trained a decoder to classify
trial types based on all trial combinations of object identity,
sensory modality of sampling, and chosen side. Trial types were
counterbalanced to ensure an equal distribution of trials for each
type in the training data. The accuracy of classification for choice,
modality, and object was assessed over time using cross-validated
predictions, which were then organized into a confusion matrix

(Fig. 6d, see also Materials and Methods). Consequently, high
object decoding accuracies mean that a decoder can accurately
classify the object’s identity regardless of the sensory modality.
The classifier failed to extract object identity based on PER or
sensory cortex population activity, but revealed above-chance
classification accuracies for the HPC after the NPR (Figs. 6f
and S4, P < 0.05, tested against permutation-based surrogate
distribution). The population decoding additionally replicated
the earlier single unit analysis on sensory modulations by
demonstrating a high accuracy in classifying the sensory modality
based on the population activity within regions S1BF, V2L, or
HPC (Figs. 6e and S4, P < 0.05, tested against permutation-based
surrogate distribution). However, it failed to accurately discern
the sensory modality based on population activity within the PER
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Fig. 5. Visual object coding by single cells in V2L, but not in PER, S1BF, or HPC. a1 to 2) Example V2L cell that is coding for object identity. This cell’s
response to object B cannot be explained by choice behavior: note the raster differences between the 2 objects for only the left choice trials (for this rat
the left choice was associated to object B). Top panels: spike rasters of visual trials grouped by object identity, and color coded according to response
side. Bottom panel: mean firing rates over time for trials in which object A was presented vs. trials presenting object B (visual trials only). Shaded bands
indicate SEM. b1 to 2) example V2L cell that is coding for choice side, but not for object identity. c1 to 2) Example V2L cell that first codes for object
identity, and codes for choice side thereafter. a2, b2, c2) Absolute magnitudes of the GLM coefficients for the choice side and object identity for the same
cells as in a1 to c1. Colored dots above coefficients indicate significant encoding of the object identity (cyan) or choice side (purple; P < 0.05 Benjamini–
Hochberg corrected). The shaded gray areas indicate the time window used for subsequent calculation of object coding indices in f. d) Time course of
object coding dominance and choice coding dominance in V2L. Heatmaps display the difference in predictor coefficient magnitude over time for all
237 V2L cells (left: object, right: choice). Colored dots on the right side of a heatmap indicate cells for which the object predictor (cyan) or choice-side
predictor (purple) contributed significantly to the firing rate variance on any time point within the 0.5 s after starting to sample. The cells are ordered
according to the maximal dominance of a given predictor (left: object dominance, right: choice dominance. e) Time course of the average difference in
predictor coefficient magnitude from all S1BF, PER, and HPC (compare to V2L, upper panels of d)). f) Area-specific percentages of cells with significant
GLM-based object modulation in visual trials (S1BF: 5.1%; V2L: 9.2%; PER: 3.6%; HPC: 3.5%). Bars indicate 95% CIs. ∗ indicates percentage of significant
cells higher than chance (P < 0.05, 2-proportions z-test).
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Fig. 6. Population decoding of object identity and trial type. a) Left side: object population decoding accuracies over time for V2L obtained through
training and testing within visual trials. Green dots indicate above chance object decoding accuracies. The red circle highlights the highest object
decoding accuracy. Right side: probability density histogram of decoding accuracies derived from shuffled distributions. The highest observed object
decoding accuracy is in red. Dashed lines are 95% CIs based on shuffled distributions b) same as for a, but now for S1BF population activity during
tactile trials. c) Modality-specific object decoding accuracies obtained through training and testing within visual (top row) and tactile trials (bottom
row). Histograms are probability densities of decoding accuracies derived from shuffled distributions. Red lines indicate the maximum object decoding
accuracy after the sampling onset, obtained by decoding over time using a sliding window. Dashed lines are 95% CIs based on the shuffled distributions
d) schematic illustration of trial type classification accuracy assessment based on contingency matrices. The population decoder was trained to predict
trial types based on the presented objects (A vs. B), the choice sides (L, left vs. R, right), and the sensory modality (V, vision vs. T, touch). This contingency
matrix is from area V2L and illustrates high modality classification shortly after the start of sampling. Green outlines are the correct predictions for
the sensory modality. e) Time course of decoding accuracy for the classification of trial types based on population activity in S1BF, V2L, PER, and HPC.
Colored dots indicate significant classification accuracies. f) Same as b, but now only for the amodal object trial label, and based on firing rates aligned
on the NPR (red vertical line).
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(Figs. 6e and S4, P > 0.05, tested against permutation-based
surrogate distribution). The decoder additionally demonstrated
a high accuracy in predicting the chosen side based on the
population activity patterns within each of the regions during
both tactile and visual trials (Figs. 6e and S4, P < 0.05, tested
against permutation-based surrogate distribution). This obser-
vation highlights a widespread representation of the choice side
that remained consistent across sensory modalities; although the
exact nature of this representation might either originate from
corollary discharge, vestibular-proprioceptive inputs, or from
spatial coding. Choice side decoding based on PER population
activity was comparatively less robust and manifested at a
later stage than in the other regions. Notably, this decoding
performance appeared to be concentrated around the median
time points of the NPR (Fig. S4).

To further quantify modality-independent object representa-
tion, we investigated the extent of generalization within the pop-
ulation code by training and testing a decoder across distinct
sensory modalities (Bernardi et al. 2020). We initially trained a
decoder to classify objects based on neural activity from tac-
tile trials. Subsequently, we evaluated the decoder’s ability to
classify objects using neural activity derived from visual trials
(Fig. 7a). To eliminate potential biases by the choice sides, left
and right choice side trials were counterbalanced within the
training and testing data sets. Moreover, we extended the analysis
to encompass a more extended time period following the NPR,
aiming to assess the duration of the previously observed amodal
object population code in the HPC. In this cross-modal population
decoding analysis, we generated pseudo-populations composed of
rate vectors from 100 neurons, gathered from various sessions,
for each area individually. Decoding based on the neural data in
the HPC revealed significant decoding accuracies for cross-modal
object classification after the NPR, but not before. This generalized
object population code persisted throughout the duration of the
ITI—although with some interruptions—until the onset of the
subsequent trial in the case of a correct response (P < 0.05, tested
against permutation-based surrogate distribution; Fig. 7b; ITI fol-
lowing a correct response is 12 s). The decoder failed to classify
the object across sensory conditions based on population activity
in the PER, or in the sensory cortices (P > 0.05 tested against
permutation-based surrogate distribution; Fig. 7c). Despite the
absence of clear object representations in the PER’s population
code when decoding within trial types (Fig. 6a to c) or across con-
ditions (Fig. 7), or when pooling tactile and visual trials together
(Fig. 6d to f), it remains possible that the PER represents the
objects exclusively upon combined tactile and visual input. We
therefore verified that this was not the case by training and testing
a classifier based on neural activity from only the multisensory
trials. Decoding within only multisensory trials did not reveal a
population code for object identity in PER (P > 0.05, tested against
permutation-based surrogate distribution). Hence, a modality-
independent population code for objects emerged within the
HPC during the ITI upon reward-based feedback. Remarkably,
this representation occurred in the absence of concurrent object
representation in PER.

Perirhinal neural correlates of choice side
temporally align to reward site visits
In addition to the anatomical connections between PER and sen-
sory cortical regions, PER also receives projections from subcor-
tical motivation-related structures such as the substantia nigra,
ventral tegmental area, and amygdala, as well as from medial

PFC (Burwell et al 1995; Kajiwara et al. 2003; Agster et al. 2016).
Previous studies demonstrated that PER cells carry spatial infor-
mation during choice behavior in a task environment (Bos et al.
2017) and differentiate between choice sides most strongly at
goal-specific locations (Ahn and Lee 2015). As, in our task, high
accuracies in choice side predictions based on PER population
activity concentrated around the median time points of the NPR
(see above), we set out to examine the temporal modulation of
PER choice side correlates in more detail. Corollary discharge and
vestibular-proprioceptive inputs may be expected to arise upon
initiation of locomotion toward reward goals, whereas represen-
tations of goal locations may arise upon arrival at the reward
ports. We first verified that PER cells were not affected by the
choice side during locomotion initiation by AUROC analysis of
firing rates of neurons during turns toward the different direc-
tions. We found that PER firing rates were not affected by choice
side when rats initiated a turn toward the goal locations for
reward when they retracted from the object (interval: 0 to 1 s
from sample start; Fig. 8b). This absence of choice side coding
contrasted to modulations observed in the HPC and the sen-
sory regions, which did reflect changes in snout positions dur-
ing opposed directions of self-motion when retracting from the
object.

Contrasting with the lack of specific coding during object sam-
pling and retraction, we did in fact observe that PER cells prefer-
entially discharge after the NPR (Figs. 2c and e and S3; probabil-
ities, S1BF: 0.176, Z = 1.24, P = 0.426; V2L: 0.172, Z = 2.02, P = 0.086;
PER: 0.281, Z = 4.63, P < 0.001; HPC: 0.113, Z = −0.50, P = 1.00, tested
against chance level of uniformly distributed events, proportion z-
test, Bonferroni corrected). Because of the self-paced nature of the
task, rats exhibited variable delays between initiation of locomo-
tion and the arrival at reward locations across trials. To examine
how the temporal modulation of choice side related to the arrival
at the reward locations, we applied a linear time-warp to the
neural data from locomotion initiation to reward location arrival.
We then constructed pseudo-populations for each area separately
as described earlier, but now restricted the classification to the
choice sides only and performed the analysis on visual and tactile
trials separately. The choice side of the animal was accurately
decoded from the population responses from S1BF, V2L, and HPC
as soon as the animals initiated their choice response, both in
darkness and light. In PER, decoding accuracy of choice side was
generally lower during locomotion, but peaked after the first NPR
(Fig. 8c).

Multiple task variables could potentially affect firing rates of
individual cells during choice behavior. To disentangle the contri-
bution of photic condition, choice (Left/Right), reward, and object
coding, we examined the relation between each of these task
variables and neural responses with a GLM. Cells were considered
to be selective for choice side if the GLM fit resulted in a significant
choice side coefficient at any moment in the trial (see Materials
and Methods). PER choice side coefficients preferentially peaked
following the NPR, whereas cells in other regions differentiated
between sides most prominently during the preceding locomotion
toward the goal location (Fig. 8d; fraction of choice encoding cells
preferentially firing for the left over the right side: S1BF: 0.557;
V2L: 0.378; PER: 0.622; HPC: 0.527). In total, 12.2% of PER cells
encoded the choice side within 1 s after the NPR, as opposed
to 8.0% in the second just before NPR entry. These results show
that PER neural responses are more strongly correlated to the
moments of (expected) reward delivery, compared with the HPC
and sensory regions, which were modulated by choice side most
strongly during locomotion.
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Fig. 7. Cross-modal population decoding of object identity a) schematic illustration of cross-modal object classification based on population activity.
A population decoder was trained to classify objects based on neural activity during tactile trials. The decoder’s ability to generalize across sensory
modality was tested by classifying objects based on the activity of the same cells during visual trials. b) Time course of cross-modal object decoding
accuracy based on population activity from HPC, aligned on the NPR (red line). The cyan line marks the onset of a new trial after a fixed ITI of 12 s
following a correct response. Green dots indicate significant cross-modal object classification accuracies. Dashed lines are 95% CIs based on shuffled
distributions. c) Same as for b, but now for S1BF, V2L, and PER.

PER encodes choice and trial outcome during
reward sampling
Our results indicate that PER cells preferentially discharge after
the poke for reward, and that the PER increasingly starts to
differentiate between choice sides when rats arrive at the goal
locations for reward. The PER might integrate information on
expected reward for a specific goal location with information
on the actual outcome, reminiscent of prediction values, and
prediction errors in temporal difference reinforcement learning
(TDRL) algorithms and related models (Schultz et al. 1997;
Sutton 1988; Pennartz 1995; Sutton and Barto 1981). Therefore, we
scrutinized the period in which the rats experienced the actual
trial outcome based on nose poke and lick behavior. This IOP
started when rats poked the reward port, after which they were
confronted with the delivery of reward or the omission of it. The
rats’ reactions were then measured by means of the first lick
after the NPR, which was the moment that rats started to sample
for the outcome. The IOP lasted until rats had started to sample
for reward delivery by licking in 95% of all trials. Importantly,
lick rate adjustments to the availability of reward (delivery vs.
omission) occurred subsequently to this epoch (Fig. 9a). Thus, any
differences in firing rate between rewarded and unrewarded trials
after the IOP could not be differentiated from reward-associated
motor activity (e.g. licks and reward port exits), whereas firing
rate modulations during the IOP were unlikely driven by these

confounds. Upon inspection of individual neurons, we noted that
a subset of PER cells transiently increased their firing rates during
the IOP depending on the actual trial outcome (Fig. 9b). In the
other regions, cells generally fired according to the outcome only
after the IOP and in a more sustained way (Fig. 9c). We employed
a GLM on the reward phase to disentangle the contributions of
trial outcome, photic condition (object-focused light off or on),
and object identity to time-dependent modulations in firing-
rate distributions for each individual neuron (Figs. 10a to c and
S5). We quantified whether individual cells carried information
about trial outcome earlier in PER than in other regions by
comparing the summed reward coefficient magnitude over time
between significant cells from the different regions. During the
IOP, outcome coefficient magnitudes increased earliest in PER
(Fig. 10d). PER cells had higher outcome magnitudes during the
IOP compared with a pre-poke baseline (Fig. 10d; P = 0.001; 1-way
ANOVA [F = 8.385, P < 0.001], with post hoc Tukey test). Similarly,
the number of cells that preferentially encoded the outcome
during the IOP was higher than expected by chance only in
the PER, whereas cells in other regions generally responded
thereafter, during outcome-dependent behavioral adjustments
(Fig. 10e and f; P < 0.05; proportion z-test, Bonferroni corrected;
S1BF: 7.9%, Z = −2.46, P = 0.99; V2L: 10.9%, Z = −1.72, P = 0.96; PER:
30.3%, Z = 2.08, P = 0.02; HPC: 1.6%, Z = −10.52, P = 1.00). During
the IOP, the firing rate of individual PER cells did not correlate to
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Fig. 8. Temporal dynamics of choice side coding. S1BF, V2L, and HPC cells were modulated mainly during the choice phase, whereas PER cells were
mostly modulated during the outcome phase. a) Z-scored firing rates of example cells in the cortico-hippocampal hierarchy. Firing rates are linearly
warped to align on the start of object sampling (black), the end of sampling, coinciding with the start of locomotion toward the left or right side (blue),
and the NPR (red) to account for unequal durations in object sampling and response latencies. b) Top: average difference in snout position between left
and right choice trials during object sampling behavior. Rats initiated a sideways motion toward the chosen side already within 1 s after sampling onset.
Bottom: percentage of cells significantly modulated by choice side, plotted as a function of time. Initial sideways motion toward the chosen side was
represented prominently by cells in the sensory cortices and HPC, but not by cells in the PER. c) Top: mean global body position difference of 2 example
rats on the elevated platform during choice behavior (black). Bottom: temporal dynamics of population decoding accuracy of choice side, based on firing
rates linearly warped for temporal alignment on the end of the sampling, marked by retraction from the object and the start of the left or right choice
turn, and the poke for reward. d) Densities of NPR-aligned times at which cells maximally differentiate between the choice sides, based on coefficients
from a GLM that included choice side, object identity, sensory modality, and trial outcome as predictors. Only cells with a significant choice side predictor
are included in the densities. The vertical lines represent the median time points derived from all trials from all sessions.
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Fig. 9. Trial outcome selectivity of perirhinal cells during reward delivery. a) Overview of poke and lick behavior during correct and incorrect trials. The
IOP was defined from the NPR up to the moment the rats had started licking in 95% of all trials. Even though a reward was only delivered in correct
trials (and upon nose poke entry), rats initiated the lick response in all trials (rewarded and unrewarded) and adapted their licking behavior based on the
presence of reward thereafter. Licking behavior thus typically consisted of initial licks to sample for reward delivery, followed by more licks for reward
consumption in correct trials. b) Three example PER cells that differentiated between trial outcomes during the IOP, when rats sustained their nose
poke to sample for reward delivery. c) As opposed to PER cells, 3 example cells from S1BF, V2L, and HPC are shown that became largely selective for trial
outcome after the IOP, when lick and poke-exit behavior depended on the actual trial outcome (t = 0 marks the onset of the IOP; vertical dashed line
marks the end of the IOP).

the delivery of reward itself, because the majority coded for the
omission of reward (Fig. 10g; Z = 3.285, P < 0.001, proportion z-test:
18 error-up cells > 5 correct-up cells). These results indicate that,
when rats start sampling for reward delivery, PER cells mainly
signal negative outcome.

Because PER cells preferentially encoded the choice and out-
come following the NPR, we compared the time course between
choice side and trial outcome coefficients based on the GLM coef-
ficients (Fig. 10h). Overlaid densities of preferential choice side
and trial outcome encoding revealed that the PER simultaneously
encoded the trial outcome and choice side in the IOP, when rats
sampled for reward delivery. Together, these results suggest that
the PER integrates choice information with feedback on reward.
This contrasted to the 2 sensory regions and HPC for which
correlates were more tied to epochs of self-motion, likely arising
from corollary discharge and sensory input during locomotion or
from spatial coding (such as place fields for hippocampal cells).

Discussion
In this study, we characterized the neural correlates of multisen-
sory object sampling, choice side, and trial outcome at prominent
processing stages of the cortico-hippocampal hierarchy by con-
ducting quadruple-area ensemble recordings in rats performing a
multisensory object recognition task.

Our first hypothesis regarding the PER, pertaining to its poten-
tial contribution to object perception for familiar objects, pre-
dicted that object sampling would lead to sensory responses in
S1BF, V2L, and PER, and that the HPC would be less affected
by the sensory modality at hand. Active touch evoked neural
activity in S1BF and HPC, but not in V2L or PER. Light input at
the start of visual sampling evoked neural responses in V2L and
HPC, but not in S1BF or PER. Predominant responses to touch or
light input were thus absent in PER, despite its known recipro-
cal anatomical connectivity to sensory cortical regions (Agster
and Burwell 2009; Burwell et al. 1995). Importantly, PER was not
systematically sampled along the full rostro-caudal axis. Tracing
studies suggest that visual input mainly targets caudal PER, and
tactile input primarily targets the rostral PER (Agster and Burwell
2009). Modality-specific sensory input might thus be restricted
to small subregions of the PER and could therefore be missed
when recording cell samples. The majority of our PER recordings
was performed in central-to-caudal PER (Figs. 2a and S1), which
has reciprocal projections with higher-order visual areas such as
V2L but less so with S1BF (Agster and Burwell 2009). Absence of
visual responses in PER is therefore all the more striking, as is
the contrast to HPC and sensory regions given that PER is often
considered to be a relay station between sensory cortices and the
rest of the medial temporal lobe (MTL), including HPC (Naber et al.
1997; Doan et al. 2019; Fiorilli et al. 2021). Altogether, the present
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Fig. 10. Simultaneous encoding of choice side and unexpected outcome in PER. a) One example PER cell revealing negative GLM weights for the outcome.
The negative outcome weights reflect the increased firing rate during an unrewarded IOP. Cyan area = IOP (as in b, d, e, g, and h). b) Outcome coefficient
time course of 3 example S1BF (orange) and PER (magenta) cells. Note that the outcome coefficients in S1BF cells increased after the IOP and are
therefore likely driven by nose poke exits upon reward omissions. PER cells encoded the outcome earlier, when holding the NPR during the IOP (shaded
cyan area). c) Time course of coefficient magnitudes for choice side (left) and outcome (right) for all PER cells. Cells are ordered according to their
maximum outcome coefficient magnitude. Highest outcome coefficient magnitudes in PER clustered toward the end of the IOP (cyan outline), whereas
the choice side was often encoded already before the NPR. d) Left: time course of cumulative outcome modulation following reward port entry. Outcome
modulation is quantified by the cumulative sum of outcome coefficient magnitudes over time, averaged over all cells from a given area. Only cells with
a significant coefficient for the outcome at any time bin are included. Right: cumulative sum of outcome coefficient magnitude at the end of the IOP.
Colored vertical bars are CIs, horizontal bar for significant comparisons (P < 0.05, 1-way ANOVA [F = 8.385, P < 0.000] with post hoc Tukey test). e) Time
course of preferential trial outcome modulation for each area, based on the peak moment of the coefficient magnitude per significant cell. f) Percentage
of significant cells that are modulated by outcome strongest during IOP as opposed to outside of the IOP (S1BF: 7.9%; V2L: 10.9%; PER: 30.3%; HPC: 1.6%).
Bars are permutation-based CIs, ∗ for significantly higher percentages than uniformly distributed events (P < 0.05, 1-sided z-test of proportions). g) Left
side: proportions of significantly modulated PER cells having positive and negative outcome coefficients. Negative outcome coefficients resulted from
higher firing rates during unrewarded IOPs compared with rewarded IOPs. Right side: example cells responding to reward delivery or reward omission.
Green and red traces indicate firing rates during rewarded and unrewarded trials, respectively. h) Overlaid densities of poke-aligned times at which
cells maximally differentiate between choice side (purple) and trial outcome (green), based on GLM coefficients. Only cells with significant coefficients
for the given predictor (choice side or trial outcome) are included in the densities. Cells in the PER preferentially encoded both the choice side and the
outcome (mainly reward omissions) when rats held the NPR during the IOP. The HPC and the sensory regions encoded outcome-related parameters
after rats exited the reward site.
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study supports the notion that sensory cortices are primarily
modulated by their primary modality, and that multisensory (or
amodal) processing is more abundant in the HPC compared with
the PER and sensory regions considered here.

The object identity could be decoded from individual cells
in V2L during visual sampling, but not during tactile sampling.
Object identity was not prominently encoded by individual cells
in the other regions during tactile sampling. Cells in S1BF may
primarily represent low-level sensory features such as the angles
and speed of whiskers upon object contact (Arabzadeh et al. 2004;
Fassihi et al. 2020), much like cells in the primary visual system
are mainly tuned by low-level visual features. Additionally, V2L
represented the object through the collective activity of cell pop-
ulations only in visual trials, whereas S1BF did so exclusively in
tactile trials. An additional amodal population code for the objects
emerged in the HPC later in time, throughout most of the ITI. This
suggests a sustained object memory signal in the HPC initiated
by reward-based feedback following the NPR. Altogether, these
results show that representations of solid, 3D objects can exist in
higher-order sensory cortex, as well as in the HPC without a robust
object representation in PER—even though this subregion receives
many afferent fibers from the sensory cortices and communicates
with HPC (Agster and Burwell 2009). Aside from modality-specific
responses, object sampling did not lead to prominent amodal
“object fields” in PER, as described in large open field environ-
ments, where rats explored objects spontaneously (Burke et al.
2012). As previously proposed, the behavioral task may require
a spatial-navigational component for spatial firing fields to arise
in PER (Ahn and Lee 2015; Bos et al. 2017; Fiorilli et al. 2021).
Notably, the objects we used were highly familiar to the rats and
not explicitly configured to be ambiguous, which might be factors
that lower the perceptual-mnemonic demands and recruitment
of MTL structures such as PER (von Linstow et al. 2016; Doron et al.
2020). For instance, it is possible that sensory or invariant object
representations only arise in PER when stimuli are novel, and this
awaits future studies. Nonetheless, our results dispute an impor-
tant, general perceptual-mnemonic role for PER in coding object-
specific features when familiar objects are actively sampled and
recognized.

PER and the neural coding of unexpected
motivational outcome
The most prominent responses in PER were found after the
animal’s arrival at the reward sites. First, PER was the only
region in which cells preferentially encoded the choice side just
after the NPR, as opposed to during the choice phase (Fig. 8).
Second, PER cells were responsive to the motivational outcome
of a spatial choice during the reward delivery phase, just when
rats started licking to sample for reward delivery. These signals
were specific for the PER; correlates of trial outcome in HPC and
the sensory neocortices were observed only when rats started
to terminate the NPR (Figs. 9, 10c, and S5c). In PER, signaling of
reward omission was more often observed than when reward
was delivered. This may relate to the larger degree of surprise
associated with omissions than deliveries, because the range of
correct responses ranged between 70% and 85% of trial types in
which objects were presented (Fig. 1d). A systematic variation
of (both negative and positive) surprise in trial outcome, applied
against a background of variable reward history, must await future
investigations.

Because PER firing responses peaked after reward port entry
(when the subject was immobile), these PER responses (reported
as population responses and GLM coefficients) are unlikely to
be driven by locomotion, vestibular-proprioceptive inputs, or by

differential sensory flow accompanying body movements toward
reward ports. Even though PER cells coded for choice side most
strongly after the arrival at a goal location, the PER started to
differentiate between sides (but not between outcomes) already
before arrival at the goal locations (Figs. 8c and d and 10h). This
suggests that these cells anticipated the subject’s arrival at a
given goal location: the closer to a given reward goal, the higher
the firing rates for a specific population of PER cells. The relevance
of reward delivery for PER firing is supported by earlier work
demonstrating that PER cells lock onto large spatial segments of
a maze associated with reward- and other task-related events;
these firing fields generally peak at, or close to, goal locations
(Bos et al. 2017). However, in this earlier study, reward delivery was
not accurately timed in relation to PER firing. Overrepresentation
of motivationally relevant locations has been described in the
HPC by the clustering of (usually small) place fields near reward
sites (Hollup et al. 2001; Lansink et al. 2012; Gauthier and Tank
2018). The excess density of choice-side coding in HPC cells just
before arrival at goal locations (Figs. 8d and S3b) aligns well with
such overrepresentation. PER firing responses are notably distinct
from place cells observed in HPC as they preferentially encode
the choice side after the NPR, as opposed to place cells activated
before or upon arrival at reward sites (Figs. 6c and 8d).

The observed neural correlates of outcome in PER are reminis-
cent of value and reward prediction signals in TDRL algorithms,
neural correlates of which have been attributed to mesencephalic
dopamine neurons (Mirenowicz and Schultz 1994, 1996; Schultz
et al. 1997; Stalnaker et al. 2019; but see Rusu and Pennartz 2020).
A single dopaminergic cell may encode both positive and negative
prediction error, whereas PER cells in our study were found to
code by way of reward-up or omission-up firing-rate responses.
Recently, comparable reward value signals have been reported in
the serotonin system, such as in the dorsal raphe nucleus, which
is well connected to the PER (Vertes et al. 1999; Bromberg-Martin
et al. 2010). Much like dopamine signals, sustained activity of
dorsal raphe neurons can be driven by expected reward, and
signal positive or negative reward prediction errors. In contrast to
midbrain dopaminergic neurons which are phasically excited by
positive errors and decrease firing activity upon negative errors,
serotonergic neurons are primarily excited by punishment (Cohen
et al. 2015). Encoding of punishment may be reminiscent of, but
is different from signaling the omission of an expected reward,
which is the predominant effect seen in PER neurons.

As compared with Ahn and Lee (2015) on rat PER, we already
noted some similarities in findings, but several points can be
highlighted where the current study goes significantly beyond
their results. First, we recorded from 3 other cortical areas in
addition to PER, which allowed us to establish a positive control
for object coding as compared with the null finding, viz. that PER,
somewhat surprisingly, does not code object identity. Our finding
that V2L neurons did code object identity (Fig. 5) shows that the
solid, 3D objects, and the task protocol we used were suitable
for identifying object correlates in the neocortex, which was not
shown by Ahn and Lee (2015), using 2D images as visual stimuli.
Second, Ahn and Lee’s task deployed an auditory cue, delivered
at the time of the choice response in their task, to signal whether
the rat’s behavioral response was correct or not, which confounds
the identification of choice correlates with both sensory input
(tone) and tone-induced changes in reward expectation. Third,
Ahn and Lee did not segregate the reward consumption phase
from an earlier IOP period (as in Figs. 9 and 10), making it difficult
to disentangle effects of reward from those of whole-body motor
activity elicited by (non-)reward. These confounding factors may
explain why these authors found relatively many PER cells to
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be modulated during the behavioral choice phase and less cells
whose activity could be specifically related to reward or its expec-
tation.

In line with Eradath et al. (2015), one of the primary objectives
of our study was to characterize the neural representations of
stimuli and their corresponding reward outcomes in PER. Eradath
et al. (2015) found that cells in PER of macaque monkeys repre-
sent cue-outcome associations and temporal context. PER cells
mainly represented the outcome type contingent on the cue and
showed sustained activity from cue onset until the next trial. This
representation depended on visual stimuli and was not present
when rewards were given independently of cues. A distinct feature
of our study is the incorporation of multisensory stimuli, which
provides a unique perspective on the encoding and representation
of cue-outcome associations in real-world scenarios. Our results
diverge from previous research by revealing that even with the
inclusion of multisensory stimuli, clear object representations
were not evident in the PER. This finding challenges the prevailing
notion and suggests that other neural mechanisms or regions (i.e.
V2L) may play a more prominent role in object perception.

The causal involvement of the rodent PER in object perception
or memory has often been investigated by assessing impairments
in detecting odd or novel items (Bartko et al. 2007; Albasser et al.
2015; Reid et al. 2012). In the context of reinforcement learning,
novelty is frequently viewed as a predictor of a possible reward,
or as being rewarding in and of itself, which encourages explo-
ration before actual appetitive benefits are realized (Kakade and
Dayan 2002; Akiti et al. 2022). The current study reports neural
representations of rewarded locations (i.e. sites where the NPR
is produced) co-occurring with reward-outcome signals in PER,
suggesting that PER lesions might disrupt the assignment of error-
signals to unexpected items associated with novelty detection.

It may thus be hypothesized that PER facilitates learning and
adaptive behavior by taking part in signaling unexpected reward
events (be it as negative or positive surprise) for specific actions
such as spatial choices, wherein the interaction with serotonin
and/or dopamine signaling needs further investigation. As else-
where in the cortex, pyramidal cells of the PER use glutamate
as neurotransmitter, and it is noteworthy that Reinforcement
Learning based on deviations from expected reward can also be
implemented in models using glutamatergic, Hebbian synapses
(Pennartz 1997). The hypothesis that PER plays an important role
in reward-dependent learning is supported by Doron et al. (2020)
showing that PER outputs arriving in layer 1 of rodent somatosen-
sory cortex are critical for learning associations between stimuli
and reward. These associations become unnecessary for correct
task performance once the task rule has been acquired.

Altogether, the present study challenges the notion that PER
is generally involved in perceptual processing, suggesting that
deficits in visually guided behavior observed after PER lesions may
be primarily because of deficits in predicting reward outcomes
and novelty detection. This interpretation is supported by the
absence of such reward-based feedback in V2L, S1BF, and HPC. It
further suggests that the final stage of visual object perception
takes place upstream of PER (e.g. V2L or TeA), whereas the PER
plays a critical role in learning and remembering associative
relations among events but does not contribute significantly to
object perception. This suggestion is in line with the relatively
poor functional connectivity (as quantified by single neuron-to-
population coupling) the rat PER displays toward sensory cortices
and HPC in a visual discrimination task (Dorman et al. 2023).
Further studies examining learning under parametric variations
of reward parameters will be required to determine how motiva-
tional feedback and error signaling in the PER compare to adjacent

structures in the MTL, such as the postrhinal and entorhinal
cortices. More work along these lines is needed to characterize the
input–output wiring of reward-related cells in PER in more detail,
and to quantify how signaling of unexpected outcomes and errors
evolves over the course of learning.
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