17,836 research outputs found
Low-temperature solder for joining large cryogenic structures
Three joining methods were considered for use in fabricating cooling coils for the National Transonic Facility. After analysis and preliminary testing, soldering was chosen as the cooling coil joining technique over mechanical force fit and brazing techniques. Charpy V-Notch tests, cyclic thermal tests (ambient to 77.8 K) and tensile tests at cryogenic temperatures were performed on solder joints to evaluate their structural integrity. It was determined that low temperature solder can be used to ensure good fin-to-tube contact for cooling-coil applications
Is there any Evidence for Regional Atmospheric 14C Offsets in the Southern Hemisphere?
Center for Accelerator Mass Spectrometry (CAMS) Tasmanian huon pine (Lagarostrobos franklinii) decadal measurements for the interval AD 745–855 suggest a mean interhemispheric radiocarbon offset (20 ± 5 yr), which is considerably lower than the previously reported mean interhemispheric offset for the last 2 millennia (44 ± 17 yr). However, comparable University of Waikato (Wk) New Zealand kauri (Agathis australis) measurements show significantly higher values (56 ± 6 yr), suggesting the possibility of a temporary geographic (intrahemispheric) offset between Tasmania, Australia, and Northland, New Zealand, during at least 1 common time interval. Here, we report 9 new Wk Tasmanian huon pine measurements from the decades showing the largest huon/kauri difference. We show statistically indistinguishable Wk huon and Wk kauri 14C ages, thus dispelling the suggestion of a 14C geographic offset between Tasmania and Northland
Recommended from our members
Brain Localisation of Memory Chunks in Chessplayers
Chess experts store domain-specific representations in their long-term memory; due to the activation of such representations, they perform with high accuracy in tasks that require the maintenance of previously seen information. Chunk-based theories of expertise (chunking theory: Chase & Simon, 1973; template theory: Gobet & Simon, 1996) state that expertise is acquired mainly by the acquisition and storage in long-term memory of familiar chunks that allow quick recognition. We tested some predictions of these theories by using fMRI while chessplayers performed a recognition memory task. These theories predict that chessplayers access long-term memory chunks of domain-specific information, which are presumably stored in the temporal lobes. We also predicted that the recognition memory tasks would activate working memory areas in the frontal and parietal lobes. These predictions were supported by the data
How can we test seesaw experimentally?
The seesaw mechanism for the small neutrino mass has been a popular paradigm,
yet it has been believed that there is no way to test it experimentally. We
present a conceivable outcome from future experiments that would convince us of
the seesaw mechanism. It would involve a variety of data from LHC, ILC,
cosmology, underground, and low-energy flavor violation experiments to
establish the case.Comment: 5 pages, 4 figure
Friction and wear of iron and nickel in sodium hydroxide solutions
A loaded spherical aluminum oxider rider was made to slide, while in various solutions, on a flat iron or nickel surface reciprocate a distance of 1 cm. Time of experiments was 1 hr during which the rider passed over the rider passed over the center section of the track 540 times. Coefficients of friction were measured throughout the experiments. Wear was measured by scanning the track with a profilometer. Analysis of some of the wear tracks included use of the SEM (scanning electron microscrope) and XPS (X-ray photoelectron spectroscopy). Investigated were the effect of various concentractions of NaOH and of water. On iron, increasing NaOH concentration above 0.01 N caused the friction and wear to decrease. This decrease is accompanied by a decrease in surface concentration of ferric oxide (Fe2O3) while more complex iron-oxygen compounds, not clearly identified, also form. At low concentrations of NaOH, such as 0.01 N, where the friction is high, the wear track is badely torn up and the surface is broken. At high concentration, such as 10 N, where the friction is low, the wear track is smooth. The general conclusion is that NaOH forms a protective, low friction film on iron which is destroyed by wear at low concentrations but remains intact at high concentrations of NaOH. Nickel behaves differently than iron in that only a little NaOH gives a low coefficient of friction and a surface which, although roughened in the wear track, remains intact
Friction and Wear of Iron in Corrosive Media
Friction and wear experiments were conducted with elemental iron exposed to various corrosive media including two acids, base, and a salt. Studies involved various concentrations of nitric and sulfuric acids, sodium hydroxide, and sodium chloride. Load and reciprocating sliding speed were kept constant. With the base NaOH an increase in normality beyond 0.01 N resulted in a decrease in both friction and wear. X-ray photoelectron spectroscopy (XPS) analysis of the surface showed a decreasing concentration of ferric oxide (Fe2O3) on the iron surface with increasing NaOH concentration. With nitric acid (HNO3) friction decreased in solutions to 0.05 N, beyond which no further change in friction was observed. The concentration of Fe2O3 on the surface continued to increase with increasing normality. XPS analysis revealed the presence of sulfates in addition of Fe2O3 on surfaces exposed to sulfuric acid and iron chlorides but no sodium on surfaces exposed to NaCl
Solid spherical glass particle impingement studies of plastic materials
Erosion experiments on polymethyl methacrylate (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE) were conducted with spherical glass beads impacting at normal incidence. Optical and scanning electron microscopic studies and surface profile measurements were made on specimens at predetermined test intervals. During the initial stage of damage to PMMA and polycarbonate, material expands or builds up above the original surface. However, this buildup disappears as testing progresses. Little or no buildup was observed on PTFE. PTFE is observed to be the most resistant material to erosion and PMMA the least. At low impact pressures, material removal mechanisms are believed to be similar to those for metallic materials. However, at higher pressures, surface melting is indicated at the center of impact. Deformation and fatigue appear to play major roles in the material removal process with possible melting or softening
- …