3,407 research outputs found

    Noise Limited Computational Speed

    Full text link
    In modern transistor based logic gates, the impact of noise on computation has become increasingly relevant since the voltage scaling strategy, aimed at decreasing the dissipated power, has increased the probability of error due to the reduced switching threshold voltages. In this paper we discuss the role of noise in a two state model that mimic the dynamics of standard logic gates and show that the presence of the noise sets a fundamental limit to the computing speed. An optimal idle time interval that minimizes the error probability, is derived

    Quantum Fluctuations of a Coulomb Potential as a Source of Flicker Noise

    Full text link
    The power spectrum of quantum fluctuations of the electromagnetic field produced by an elementary particle is determined. It is found that in a wide range of practically important frequencies the power spectrum of fluctuations exhibits an inverse frequency dependence. The magnitude of fluctuations produced by a conducting sample is shown to have a Gaussian distribution around its mean value, and its dependence on the sample geometry is determined. In particular, it is demonstrated that for geometrically similar samples the power spectrum is inversely proportional to the sample volume. It is argued also that the magnitude of fluctuations induced by external electric field is proportional to the field strength squared. A comparison with experimental data on flicker noise measurements in continuous metal films is made.Comment: 11 pages, substantially corrected and extende

    The introduction of a new patient ‘welcome pack'

    Get PDF

    Evaluation of specific heat for superfluid helium between 0 - 2.1 K based on nonlinear theory

    Get PDF
    The specific heat of liquid helium was calculated theoretically in the Landau theory. The results deviate from experimental data in the temperature region of 1.3 - 2.1 K. Many theorists subsequently improved the results of the Landau theory by applying temperature dependence of the elementary excitation energy. As well known, many-body system has a total energy of Galilean covariant form. Therefore, the total energy of liquid helium has a nonlinear form for the number distribution function. The function form can be determined using the excitation energy at zero temperature and the latent heat per helium atom at zero temperature. The nonlinear form produces new temperature dependence for the excitation energy from Bose condensate. We evaluate the specific heat using iteration method. The calculation results of the second iteration show good agreement with the experimental data in the temperature region of 0 - 2.1 K, where we have only used the elementary excitation energy at 1.1 K.Comment: 6 pages, 3 figures, submitted to Journal of Physics: Conference Serie

    Weightlifting exercise and the size-weight illusion

    Get PDF
    In the size-weight illusion (SWI), large objects feel lighter than equally weighted small objects. In the present study, we investigated whether this powerful weight illusion could influence real-lift behavior-namely, whether individuals would perform more bicep curls with a dumbbell that felt subjectively lighter than with an identically weighted, but heavier-feeling, dumbbell. Participants performed bicep curls until they were unable to continue with both a large, light-feeling 5-lb dumbbell and a smaller, heavy-feeling 5-lb dumbbell. No differences emerged in the amounts of exercise that participants performed with each dumbbell, even though they felt that the large dumbbell was lighter than the small dumbbell. Furthermore, in a second experiment, we found no differences in how subjectively tired participants felt after exercising for a set time with either dumbbell. We did find, however, differences in the lifting dynamics, such that the small dumbbell was moved at a higher average velocity and peak acceleration. These results suggest that the SWI does not appear to influence exercise outcomes, suggesting that perceptual illusions are unlikely to affect one's ability to persevere with lifting weights.The authors thank J. Ladich for his help with creating the stimuli. G.B. was supported with a Banting Postdoctoral Fellowship, awarded by the Natural Sciences and Engineering Research Council of Canada (NSERC)

    Decoherence in qubits due to low-frequency noise

    Full text link
    The efficiency of the future devices for quantum information processing is limited mostly by the finite decoherence rates of the qubits. Recently a substantial progress was achieved in enhancing the time, which a solid-state qubit demonstrates a coherent dynamics. This progress is based mostly on a successful isolation of the qubits from external decoherence sources. Under these conditions the material-inherent sources of noise start to play a crucial role. In most cases the noise that quantum device demonstrate has 1/f spectrum. This suggests that the environment that destroys the phase coherence of the qubit can be thought of as a system of two-state fluctuators, which experience random hops between their states. In this short review we discuss the current state of the theory of the decoherence due to the qubit interaction with the fluctuators. We describe the effect of such an environment on different protocols of the qubit manipulations - free induction and echo signal. It turns out that in many important cases the noise produced by the fluctuators is non-Gaussian. Consequently the results of the interaction of the qubit with the fluctuators are not determined by the pair correlation function only. We describe the effect of the fluctuators using so-called spin-fluctuator model. Being quite realistic this model allows one to evaluate the qubit dynamics in the presence of one fluctuator exactly. This solution is found, and its features, including non-Gaussian effects are analyzed in details. We extend this consideration for the systems of large number of fluctuators, which interact with the qubit and lead to the 1/f noise. We discuss existing experiments on the Josephson qubit manipulation and try to identify non-Gaussian behavior.Comment: 25 pages, 7 figure

    Observational Learning During Simulation-Based Training in Arthroscopy: Is It Useful to Novices?

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.OBJECTIVE: Observing experts constitutes an important and common learning experience for surgical residents before operating under direct guidance. However, studies suggest that exclusively observing experts may induce suboptimal motor learning, and watching errors from non-experts performing simple motor tasks may generate better performance. We investigated whether observational learning is transferrable to arthroscopy learning using virtual reality (VR) simulation. SETTING/DESIGN: In our surgical simulation laboratory, we compared students learning basic skills on a VR arthroscopy simulator after watching an expert video demonstration of VR arthroscopy tasks or a non-expert video demonstration of the same tasks to a Control group without video demonstration. Ninety students in 3 observing groups (expert, non-expert, and Control) subsequently completed the same procedure on a VR arthroscopy simulator. We hypothesized the non-expert-watching group would outperform the expert-watching group, and both groups to outperform the Control group. We examined performance pretest, posttest, and 1 week later. PARTICIPANTS: Participants were recruited from the final year of medical school and the very early first year of surgical residency training programs (orthopaedic surgery, urology, plastic surgery, and general surgery) at Western University (Ontario, Canada). RESULTS: All participants improved their overall performance from pretest to retention (p < 0.001). At initial retention testing, non-expert-watching group outperformed the other groups in camera path length p < 0.05 and time to completion, p < 0.05, and both the expert/non-expert groups surpassed the Control group in camera path length (p < 0.05). CONCLUSION: We suggest that error-observation may contribute to skills improvement in the non-expert-watching group. Allowing novices to observe techniques/errors of other novices may assist internalization of specific movements/skills required for effective motor performances. This study highlights the potential effect of observational learning on surgical skills acquisition and offers preliminary evidence for peer-based practice (combined non-experts and experts) as a complementary surgical motor skills training strategy.This project was supported by a Physicians׳ Services Incorporated (PSI) Foundation, Canada grant. Funds were used to pay for salary and employee benefits (LvE). The PSI Foundation did not play a role in the investigation

    Quantum Fluctuations of Coulomb Potential as a Source of Flicker Noise. The Influence of External Electric Field

    Get PDF
    Fluctuations of the electromagnetic field produced by quantized matter in external electric field are investigated. A general expression for the power spectrum of fluctuations is derived within the long-range expansion. It is found that in the whole measured frequency band, the power spectrum of fluctuations exhibits an inverse frequency dependence. A general argument is given showing that for all practically relevant values of the electric field, the power spectrum of induced fluctuations is proportional to the field strength squared. As an illustration, the power spectrum is calculated explicitly using the kinetic model with the relaxation-type collision term. Finally, it is shown that the magnitude of fluctuations produced by a sample generally has a Gaussian distribution around its mean value, and its dependence on the sample geometry is determined. In particular, it is demonstrated that for geometrically similar samples, the power spectrum is inversely proportional to the sample volume. Application of the obtained results to the problem of flicker noise is discussed.Comment: 14 pages, 3 figure

    Baddies in the classroom: media education and narrative writing

    Get PDF
    When teachers allow pupils to write stories that include elements of popular media, we must ask what to do with media once it has entered the classroom. This article relates findings from a classroom study which focuses on children’s media-based story writing. The study looks at children as producers of new media texts and describes their activities as a form of ‘media education’. The research shows that through their production of media-based stories, children are reflecting on their consumption of media. Furthermore, children’s media-based stories make explicit some of their implicit knowledge of new media forms. Finally, children’s stories provide ample opportunities for teachers to engage in important discussions about media within the framework of existing writing programmes

    Lorentz-Lorenz Coefficient, Critical Point Constants, and Coexistence Curve of 1,1-Difluoroethylene

    Full text link
    We report measurements of the Lorentz-Lorenz coefficient density dependence, the critical temperature, and the critical density, of the fluid 1,1-difluoroethylene. Lorentz-Lorenz coefficient data were obtained by measuring refractive index and density of the same fluid sample independently of one another. Accurate determination of the Lorentz-Lorenz coefficient is necessary for transformation of refractive index data into density data from optics-based experiments on critical phenomena of fluid systems done with different apparatus, with which independent measurement of the refractive indes and density is not possible. Measurements were made along the coexistence curve of the fluid and span the density range 0.01 to 0.80 g/cc. The Lorentz-Lorenz coefficient results show a stronger density dependence along the coexistence curve than previously observed in other fluids, with a monotonic decrease from a density of about 0.2 g/cc onwards, and an overall variation of about 2.5% in the density range studied. No anomaly in the Lorentz-Lorenz coefficient was observed near the critical density. The critical temperature is measured at Tc=(302.964+-0.002) K (29.814 C) and the measured critical density is (0.4195+-0.0018)g/cc.Comment: 14 pages, 6 figures, MikTeX 2.4, submitted to Physical Review
    • …
    corecore