369 research outputs found

    In pursuit of the biological imperative an intergenerational approach to biological justice

    Get PDF
    This paper analyses the relationships between ethics and biology - particularly within the context of the Earth's degrading biosphere. We assess the manner in which humans have valued, and should value past and future human generations - from rational perspectives and as consequence of natural justice. We argue that life on Earth is more than likely unique within the universe, and that as a consequence of this, there is a duty for humans to exercise greater environmental stewardship. On the basis of this, the moral obligations that we have to future generations and ultimately future environments are debated, then confirmed. We conclude with a new biological imperative, in which it is asserted that in nature, justice is inter-temporal and must embrace all life found in the Earth's biosphere

    Illuminating our world: an essay on the unraveling of the species problem, with assistance from a barnacle and a goose.

    Get PDF
    In order to plan for the future, we must understand the past. This paper investigates the manner in which both naturalists and the wider community view one of the most intriguing of all questions: what makes a species special? Consideration is given to the essentialist view-a rigid perspective and ancient, Aristotelian perspective-that all organisms are fixed in form and nature. In the middle of the 19th century, Charles Darwin changed this by showing that species are indeed mutable, even humans. Advances in genetics have reinforced the unbroken continuum between taxa, a feature long understood by palaeontologists; but irrespective of this, we have persisted in utilizing the 'species concept'-a mechanism employed primarily to understand and to manipulate the world around us. The vehicles used to illustrate this journey in perception are the barnacle goose (a bird), and the goose barnacle (a crustacean). The journey of these two has been entwined since antiquity-in folklore, religion, diet and even science

    N incorporation and associated localized vibrational modes in GaSb

    Get PDF
    We present results of electronic structure calculations on the N-related localized vibrational modes in the dilute nitride alloy GaSb1−xNx. By calculating the formation energies of various possible N incorporation modes in the alloy, we determine the most favorable N configurations, and we calculate their vibrational mode frequencies using density functional theory under the generalized gradient approximation to electron exchange and correlation, including the effects of the relativistic spin-orbit interactions. For a single N impurity, we find substitution on an Sb site, NSb, to be most favorable, and for a two-N-atom complex, we find the N-N split interstitial on an Sb site to be most favorable. For these defects, as well as, for comparison, defects comprising two N atoms on neighboring Sb sites and a N-Sb split interstitial on an Sb site, we find well-localized vibration modes (LVMs), which should be experimentally observable. The frequency of the triply degenerate LVM associated with NSb is determined to be 427.6 cm−1. Our results serve as a guide to future experimental studies to elucidate the incorporation of small concentrations of N in GaSb, which is known to lead to a reduction of the band gap and opens the possibility of using the material for long-wavelength applications

    Band energy control of molybdenum oxide by surface hydration

    Get PDF
    EPSRC (Grants EP/M009580/1, EP/J017361/1, EP/I01330X/1, and EP/I028641/1), the Royal Society, and the European Research Council. The work benefited from the University of Bath's High Performance Computing Facility, and access to the HECToR supercomputer through membership of the UKs HPC Materials Chemistry Consortium, which is funded by EPSRC (Grant No. EP/F067496) and the UltraFOx grant

    Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3

    Get PDF
    Complex perovskite oxides are promising materials for cathode layers in solid oxide fuel cells. Such materials have intricate electronic, magnetic, and crystalline structures that prove challenging to model accurately. We analyze a wide range of standard density functional theory approaches to modeling a highly promising system, the perovskite LaCoO3, focusing on optimizing the Hubbard U parameter to treat the self-interaction of the B-site cation's d states, in order to determine the most appropriate method to study defect formation and the effect of spin on local structure. By calculating structural and electronic properties for different magnetic states we determine that U=4 eV for Co in LaCoO3 agrees best with available experiments. We demonstrate that the generalized gradient approximation (PBEsol+U) is most appropriate for studying structure versus spin state, while the local density approximation (LDA+U) is most appropriate for determining accurate energetics for defect properties

    A simulation study comparing aberration detection algorithms for syndromic surveillance

    Get PDF
    BACKGROUND: The usefulness of syndromic surveillance for early outbreak detection depends in part on effective statistical aberration detection. However, few published studies have compared different detection algorithms on identical data. In the largest simulation study conducted to date, we compared the performance of six aberration detection algorithms on simulated outbreaks superimposed on authentic syndromic surveillance data. METHODS: We compared three control-chart-based statistics, two exponential weighted moving averages, and a generalized linear model. We simulated 310 unique outbreak signals, and added these to actual daily counts of four syndromes monitored by Public Health – Seattle and King County's syndromic surveillance system. We compared the sensitivity of the six algorithms at detecting these simulated outbreaks at a fixed alert rate of 0.01. RESULTS: Stratified by baseline or by outbreak distribution, duration, or size, the generalized linear model was more sensitive than the other algorithms and detected 54% (95% CI = 52%–56%) of the simulated epidemics when run at an alert rate of 0.01. However, all of the algorithms had poor sensitivity, particularly for outbreaks that did not begin with a surge of cases. CONCLUSION: When tested on county-level data aggregated across age groups, these algorithms often did not perform well in detecting signals other than large, rapid increases in case counts relative to baseline levels

    Shrub encroachment in Arctic tundra : Betula nana effects on above- and belowground litter decomposition

    Get PDF
    Author Posting. © Ecological Society of America, 2017. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 98 (2017): 1361–1376, doi:10.1002/ecy.1790.Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by negative litter mixing effects during the early stages of encroachment.National Science Foundation Grant Numbers: OPP-0909507, OPP-0807639, ARC-0806451; Arctic LTER Project. Grant Number: DEB-102684

    Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand

    Get PDF
    Pliocene limestone formations in central Hawke's Bay (eastern North Island, New Zealand) accumulated on and near the margins of a narrow forearc basin seaway within the convergent Australia/Pacific plate boundary zone. The active tectonic setting and varied paleogeographic features of the limestone units investigated, in association with probable glacioeustatic sea-level fluctuations, resulted in complex stratigraphic architectures and contrasting types of carbonate accumulation on either side of the seaway. Here, we recognise recurring patterns of sedimentary facies, and sequences and systems tracts bounded by key physical surfaces within the limestone sheets. The facies types range from Bioclastic (B) to Siliciclastic (S) end-members via Mixed (M) carbonate-siliciclastic deposits. Skeletal components are typical cool-water associations dominated by epifaunal calcitic bivalves, bryozoans, and especially barnacles. Siliciclastic contents vary from one formation to another, and highlight siliciclastic-rich limestone units in the western ranges versus siliciclastic-poor limestone units in the eastern coastal hills. Heterogeneities in facies types, stratal patterns, and also in diagenetic pathways between eastern and western limestone units are considered to originate in the coeval occurrence in different parts of the forearc basin of two main morphodynamic carbonate systems over time

    Bulk and Surface Contributions to Ionisation Potentials of Metal Oxides

    Get PDF
    Determining the absolute band edge positions in solid materials is crucial for optimising their performance in wide-ranging applications including photocatalysis and electronic devices. However, obtaining absolute energies is challenging, as seen in CeO2, where experimental measurements show substantial discrepancies in the ionisation potential (IP). Here, we have combined several theoretical approaches, from classical electrostatics to quantum mechanics, to elucidate the bulk and surface contributions to the IP of metal oxides. We have determined a theoretical bulk contribution to the IP of stoichiometric CeO2 of only 5.38 eV, while surface orientation results in intrinsic IP variations from 4.2 eV to 8.2 eV. Highly tuneable IPs were also found in TiO2, ZrO2, and HfO2, in which surface polarisation plays a pivotal role in long-range energy level shifting. Our analysis, in addition to rationalising the observed range of experimental results, provides a firm basis for future interpretations of experimental and computational studies of oxide band structures
    corecore