566 research outputs found

    A Proposed Role of Aeroelasticity in NASA's New Exploration Vision

    Get PDF
    On 14 January 2004, NASA received a mandate to return astronauts to the Moon, evolve a sustained presence there, then head out into the solar system to Mars and perhaps beyond. This new space exploration initiative directs NASA to develop human and robotic technologies that can deliver payloads larger than Apollo to the Moon, to Mars, and bring astronauts and samples safely back to Earth at costs much lower than Apollo. These challenges require creative aerospace systems. On proposed technology for safely delivering payloads to the surface of Mars and returning samples to Earth involves deployed flexible and inflatable decelerators for atmospheric entry. Because inflatable decelerators provide the entry vehicle more drag surface area at smaller mass than traditional ablative devices, this class of decelerators can potentially accomodate larger mass payloads. The flexibility of these lightweight aeroshells can pose both vehicle and aeroelastic stability problems if not properly designed for the expected flight regimes. Computational tools need to be developed for modelling the large and nonlinear deformations of these highly flexible structures. Unlike wind tunnel testing, an integrated and efficient aeroelastic analysis tool can explore the entire flight environment. This paper will provide some background on flexible deployable decelerators, survey the current state of technology and outline the proposed development of an aeroelastic analysis and capability

    MaxEnt power spectrum estimation using the Fourier transform for irregularly sampled data applied to a record of stellar luminosity

    Full text link
    The principle of maximum entropy is applied to the spectral analysis of a data signal with general variance matrix and containing gaps in the record. The role of the entropic regularizer is to prevent one from overestimating structure in the spectrum when faced with imperfect data. Several arguments are presented suggesting that the arbitrary prefactor should not be introduced to the entropy term. The introduction of that factor is not required when a continuous Poisson distribution is used for the amplitude coefficients. We compare the formalism for when the variance of the data is known explicitly to that for when the variance is known only to lie in some finite range. The result of including the entropic measure factor is to suggest a spectrum consistent with the variance of the data which has less structure than that given by the forward transform. An application of the methodology to example data is demonstrated.Comment: 15 pages, 13 figures, 1 table, major revision, final version, Accepted for publication in Astrophysics & Space Scienc

    Recombinant Human Bone Morphogenetic Protein-2 and Collagen for Bone Regeneration

    Full text link
    The study reported describes a combination of recombinant human bone morphogenetic protein-2 (rhBMP-2) and collagen (C) to regenerate bone. Unilateral critical-sized defects (CSDs) were prepared in radii of 32 skeletally mature New Zealand white rabbits. Rabbits were divided evenly among four treatments: autograft, absorbable C (Helistatt), 35 mg of rhBMP-2 combined with absorbable C (rhBMP-2/C), and untreated CSDs. The two euthanasia periods were 4 and 8 weeks. Radiographs were taken the day of surgery, every 2 weeks, and at term and the percent of radiopacity was measured. Data analysis revealed a time-dependent increase in the percent radiopacity with rhBMP-2/C. Histological examination revealed the rhBMP-2/C treatment regenerated osseous contour by 8 weeks. According to quantitative histomorphometry, the CSD and C groups had significantly less new bone than either autograft or rhBMP-2/C (p ¡ 0.05). The results suggest that rhBMP-2/C could be an effective therapy to restore segmental bone defects

    Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation

    Get PDF
    The dopamine (DA) D2 receptor (D2R) is an important target for the treatment of neuropsychiatric disorders such as schizophrenia and Parkinson's disease. However, the development of improved therapeutic strategies has been hampered by our incomplete understanding of this receptor's downstream signaling processes in vivo and how these relate to the desired and undesired effects of drugs. D2R is a G protein-coupled receptor (GPCR) that activates G protein-dependent as well as non-canonical arrestin-dependent signaling pathways. Whether these effector pathways act alone or in concert to facilitate specific D2R-dependent behaviors is unclear. Here, we report on the development of a D2R mutant that recruits arrestin but is devoid of G protein activity. When expressed virally in "indirect pathway" medium spiny neurons (iMSNs) in the ventral striatum of D2R knockout mice, this mutant restored basal locomotor activity and cocaine-induced locomotor activity in a manner indistinguishable from wild-type D2R, indicating that arrestin recruitment can drive locomotion in the absence of D2R-mediated G protein signaling. In contrast, incentive motivation was enhanced only by wild-type D2R, signifying a dissociation in the mechanisms that underlie distinct D2R-dependent behaviors, and opening the door to more targeted therapeutics
    • …
    corecore