1,258 research outputs found

    Constraining Dark Matter Interactions with Pseudoscalar and Scalar Mediators Using Collider Searches for Multi-jets plus Missing Transverse Energy

    Get PDF
    The mono-jet search, looking for events involving missing transverse energy (MET) plus one or two jets, is the most prominent collider dark matter search. We show that multi-jet searches, which look for MET plus two or more jets, are significantly more sensitive than the mono-jet search for pseudoscalar- and scalar-mediated interactions. We demonstrate this in the context of a simplified model with a pseudoscalar interaction that explains the excess in GeV energy gamma rays observed by the Fermi Large Area Telescope. We show that multi-jet searches already constrain a pseudoscalar interpretation of the excess in much of the parameter space where the mass of the mediator (mA) is more than twice the dark matter mass (mDM). With the forthcoming run of the LHC at higher energies, the remaining regions of the parameter space where mA>2mDM will be fully explored. Furthermore, we highlight the importance of complementing the mono-jet final state with multi-jet final states to maximise the sensitivity of the search for the production of dark matter at colliders.Comment: 7 pages, 2 figures. v2: Updated to match the journal versio

    The impact of the ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit

    Full text link
    Recent ATLAS data significantly extend the exclusion limits for supersymmetric particles. We examine the impact of such data on global fits of the constrained minimal supersymmetric standard model (CMSSM) to indirect and cosmological data. We calculate the likelihood map of the ATLAS search, taking into account systematic errors on the signal and on the background. We validate our calculation against the ATLAS determinaton of 95% confidence level exclusion contours. A previous CMSSM global fit is then re-weighted by the likelihood map, which takes a bite at the high probability density region of the global fit, pushing scalar and gaugino masses up.Comment: 16 pages, 7 figures. v2 has bigger figures and fixed typos. v3 has clarified explanation of our handling of signal systematic

    Collider Interplay for Supersymmetry, Higgs and Dark Matter

    Get PDF
    We discuss the potential impacts on the CMSSM of future LHC runs and possible electron-positron and higher-energy proton-proton colliders, considering searches for supersymmetry via MET events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via MET searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2 variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m_0, m_{1/2} and A_0 of the CMSSM. Slepton measurements at CLIC would enable m_0 and m_{1/2} to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precision electroweak and Higgs measurements with a future circular electron-positron collider (FCC-ee, also known as TLEP) combined with LHC measurements would provide tests of the CMSSM at the loop level. If supersymmetry is not discovered at the LHC, is likely to lie somewhere along a focus-point, stop coannihilation strip or direct-channel A/H resonance funnel. We discuss the prospects for discovering supersymmetry along these strips at a future circular proton-proton collider such as FCC-hh. Illustrative benchmark points on these strips indicate that also in this case FCC-ee could provide tests of the CMSSM at the loop level.Comment: 47 pages, 26 figure

    Frequentist Analysis of the Parameter Space of Minimal Supergravity

    Get PDF
    We make a frequentist analysis of the parameter space of minimal supergravity (mSUGRA), in which, as well as the gaugino and scalar soft supersymmetry-breaking parameters being universal, there is a specific relation between the trilinear, bilinear and scalar supersymmetry-breaking parameters, A_0 = B_0 + m_0, and the gravitino mass is fixed by m_{3/2} = m_0. We also consider a more general model, in which the gravitino mass constraint is relaxed (the VCMSSM). We combine in the global likelihood function the experimental constraints from low-energy electroweak precision data, the anomalous magnetic moment of the muon, the lightest Higgs boson mass M_h, B physics and the astrophysical cold dark matter density, assuming that the lightest supersymmetric particle (LSP) is a neutralino. In the VCMSSM, we find a preference for values of m_{1/2} and m_0 similar to those found previously in frequentist analyses of the constrained MSSM (CMSSM) and a model with common non-universal Higgs masses (NUHM1). On the other hand, in mSUGRA we find two preferred regions: one with larger values of both m_{1/2} and m_0 than in the VCMSSM, and one with large m_0 but small m_{1/2}. We compare the probabilities of the frequentist fits in mSUGRA, the VCMSSM, the CMSSM and the NUHM1: the probability that mSUGRA is consistent with the present data is significantly less than in the other models. We also discuss the mSUGRA and VCMSSM predictions for sparticle masses and other observables, identifying potential signatures at the LHC and elsewhere.Comment: 18 pages 27 figure

    Implications of Improved Higgs Mass Calculations for Supersymmetric Models

    Get PDF
    We discuss the allowed parameter spaces of supersymmetric scenarios in light of improved Higgs mass predictions provided by FeynHiggs 2.10.0. The Higgs mass predictions combine Feynman-diagrammatic results with a resummation of leading and subleading logarithmic corrections from the stop/top sector, which yield a significant improvement in the region of large stop masses. Scans in the pMSSM parameter space show that, for given values of the soft supersymmetry-breaking parameters, the new logarithmic contributions beyond the two-loop order implemented in FeynHiggs tend to give larger values of the light CP-even Higgs mass, M_h, in the region of large stop masses than previous predictions that were based on a fixed-order Feynman-diagrammatic result, though the differences are generally consistent with the previous estimates of theoretical uncertainties. We re-analyze the parameter spaces of the CMSSM, NUHM1 and NUHM2, taking into account also the constraints from CMS and LHCb measurements of B_s to \mu+\mu- and ATLAS searches for MET events using 20/fb of LHC data at 8 TeV. Within the CMSSM, the Higgs mass constraint disfavours tan beta lesssim 10, though not in the NUHM1 or NUHM2.Comment: 22 pages, 17 figure

    Revisiting the Higgs Mass and Dark Matter in the CMSSM

    Full text link
    Taking into account the available accelerator and astrophysical constraints, the mass of the lightest neutral Higgs boson h in the minimal supersymmetric extension of the Standard Model with universal soft supersymmetry-breaking masses (CMSSM) has been estimated to lie between 114 and ~ 130 GeV. Recent data from ATLAS and CMS hint that m_h ~ 125 GeV, though m_h ~ 119 GeV may still be a possibility. Here we study the consequences for the parameters of the CMSSM and direct dark matter detection if the Higgs hint is confirmed, focusing on the strips in the (m_1/2, m_0) planes for different tan beta and A_0 where the relic density of the lightest neutralino chi falls within the range of the cosmological cold dark matter density allowed by WMAP and other experiments. We find that if m_h ~ 125 GeV focus-point strips would be disfavoured, as would the low-tan beta stau-chi and stop -chi coannihilation strips, whereas the stau-chi coannihilation strip at large tan beta and A_0 > 0 would be favoured, together with its extension to a funnel where rapid annihilation via direct-channel H/A poles dominates. On the other hand, if m_h ~ 119 GeV more options would be open. We give parametrizations of WMAP strips with large tan beta and fixed A_0/m_0 > 0 that include portions compatible with m_h = 125 GeV, and present predictions for spin-independent elastic dark matter scattering along these strips. These are generally low for models compatible with m_h = 125 GeV, whereas the XENON100 experiment already excludes some portions of strips where m_h is smaller.Comment: 24 pages, 9 figure

    Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology

    Full text link
    We study phenomenological implications of the ATLAS and CMS hint of a 125±1125\pm 1 GeV Higgs boson for the singlet, and singlet plus doublet non-supersymmetric dark matter models, and for the phenomenology of the CMSSM. We show that in scalar dark matter models the vacuum stability bound on Higgs boson mass is lower than in the standard model and the 125 GeV Higgs boson is consistent with the models being valid up the GUT or Planck scale. We perform a detailed study of the full CMSSM parameter space keeping the Higgs boson mass fixed to 125±1125\pm 1 GeV, and study in detail the freeze-out processes that imply the observed amount of dark matter. After imposing all phenomenological constraints except for the muon (g2)μ,(g-2)_\mu, we show that the CMSSM parameter space is divided into well separated regions with distinctive but in general heavy sparticle mass spectra. Imposing the (g2)μ(g-2)_\mu constraint introduces severe tension between the high SUSY scale and the experimental measurements -- only the slepton co-annihilation region survives with potentially testable sparticle masses at the LHC. In the latter case the spin-independent DM-nucleon scattering cross section is predicted to be below detectable limit at the XENON100 but might be of measurable magnitude in the general case of light dark matter with large bino-higgsino mixing and unobservably large scalar masses.Comment: 17 pages, 7 figures. v3: same as published versio

    Hadronic production of squark-squark pairs: The electroweak contributions

    Get PDF
    We compute the electroweak (EW) contributions to squark--squark pair production processes at the LHC within the framework of the Minimal Supersymmetric Standard Model (MSSM). Both tree-level EW contributions, of O(alpha_s alpha + alpha^2), and next-to-leading order (NLO) EW corrections, of O(alpha_s^2 alpha), are calculated. Depending on the flavor and chirality of the produced quarks, many interferences between EW-mediated and QCD-mediated diagrams give non-zero contributions at tree-level and NLO. We discuss the computational techniques and present an extensive numerical analysis for inclusive squark--squark production as well as for subsets and single processes. While the tree-level EW contributions to the integrated cross sections can reach the 20% level, the NLO EW corrections typically lower the LO prediction by a few percent.Comment: 36 pages, 18 figure

    Supersymmetric Dark Matter after LHC Run 1

    Get PDF
    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, neutralino_1, assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau (stau_1), stop (stop_1) or chargino (chargino_1), resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the stau_1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for missing E_T events and long-lived charged particles, whereas their H/A funnel, focus-point and chargino_1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is chargino_1 coannihilation: {parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.Comment: 21 pages, 8 figure

    The NUHM2 after LHC Run 1

    Get PDF
    We make a frequentist analysis of the parameter space of the NUHM2, in which the soft supersymmetry (SUSY)-breaking contributions to the masses of the two Higgs multiplets, mHu,d2m^2_{H_{u,d}}, vary independently from the universal soft SUSY-breaking contributions m02m^2_0 to the masses of squarks and sleptons. Our analysis uses the MultiNest sampling algorithm with over 4×1084 \times 10^8 points to sample the NUHM2 parameter space. It includes the ATLAS and CMS Higgs mass measurements as well as their searches for supersymmetric jets + MET signals using the full LHC Run~1 data, the measurements of Bsμ+μB_s \to \mu^+ \mu^- by LHCb and CMS together with other B-physics observables, electroweak precision observables and the XENON100 and LUX searches for spin-independent dark matter scattering. We find that the preferred regions of the NUHM2 parameter space have negative SUSY-breaking scalar masses squared for squarks and sleptons, m02<0m_0^2 < 0, as well as mHu2<mHd2<0m^2_{H_u} < m^2_{H_d} < 0. The tension present in the CMSSM and NUHM1 between the supersymmetric interpretation of gμ2g_\mu - 2 and the absence to date of SUSY at the LHC is not significantly alleviated in the NUHM2. We find that the minimum χ2=32.5\chi^2 = 32.5 with 21 degrees of freedom (dof) in the NUHM2, to be compared with χ2/dof=35.0/23\chi^2/{\rm dof} = 35.0/23 in the CMSSM, and χ2/dof=32.7/22\chi^2/{\rm dof} = 32.7/22 in the NUHM1. We find that the one-dimensional likelihood functions for sparticle masses and other observables are similar to those found previously in the CMSSM and NUHM1.Comment: 20 pages latex, 13 figure
    corecore