63 research outputs found
Microoptical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits
We experimentally demonstrate novel structures for the realisation of
registers of atomic qubits: We trap neutral atoms in one and two-dimensional
arrays of far-detuned dipole traps obtained by focusing a red-detuned laser
beam with a microfabricated array of microlenses. We are able to selectively
address individual trap sites due to their large lateral separation of 125 mu
m. We initialize and read out different internal states for the individual
sites. We also create two interleaved sets of trap arrays with adjustable
separation, as required for many proposed implementations of quantum gate
operations
Atom Optics with Microfabricated Optical Elements
We introduce a new direction in the field of atom optics, atom interferometry, and neutral-atom quantum information processing. It is based on the use of microfabricated optical elements. With these elements versatile and integrated atom optical devices can be created in a compact fashion. This approach opens the possibility to scale, parallelize, and miniaturize atom optics for new investigations in fundamental research and application. It will lead to new, compact sources of ultracold atoms, compact sensors based on matter wave interference and new approaches towards quantum computing with neutral atoms. The exploitation of the unique features of the quantum mechanical behavior of matter waves and the capabilities of powerful state-of-the-art micro- and nanofabrication techniques lend this approach a special attraction
Coherent Patterning of Matter Waves with Subwavelength Localization
We propose the Subwavelength Localization via Adiabatic Passage (SLAP)
technique to coherently achieve state-selective patterning of matter waves well
beyond the diffraction limit. The SLAP technique consists in coupling two
partially overlapping and spatially structured laser fields to three internal
levels of the matter wave yielding state-selective localization at those
positions where the adiabatic passage process does not occur. We show that by
means of this technique matter wave localization down to the single nanometer
scale can be achieved. We analyze in detail the potential implementation of the
SLAP technique for nano-lithography with an atomic beam of metastable Ne* and
for coherent patterning of a two-component 87Rb Bose-Einstein condensate.Comment: 6 pages, 5 figure
Atomtronics with holes: Coherent transport of an empty site in a triple well potential
We investigate arrays of three traps with two fermionic or bosonic atoms. The
tunneling interaction between neighboring sites is used to prepare multi-site
dark states for the empty site, i.e., the hole, allowing for the coherent
manipulation of its external degrees of freedom. By means of an ab initio
integration of the Schr\"odinger equation, we investigate the adiabatic
transport of a hole between the two extreme traps of a triple-well potential.
Furthermore, a quantum-trajectory approach based on the de Broglie-Bohm
formulation of quantum mechanics is used to get physical insight into the
transport process. Finally, we discuss the use of the hole for the construction
of a coherent single hole diode and a coherent single hole transistor.Comment: 9 pages, 6 figure
Implications of SU(2) symmetry on the dynamics of population difference in the two-component atomic vapor
We present an exact many body solution for the dynamics of the population
difference induced by an rf-field in the two-component atomic cloud
characterized by equal scattering lengths. This situation is very close to the
actual JILA experiments with the two-component Rb vapor. We show that no
intrinsic decoherence exists for , provided the exact SU(2) symmetry
holds. This contrasts with finite dissipation of the normal modes even in the
presence of the SU(2) symmetry. The intrinsic decoherence for \ may
occur as long as deviations from the exact SU(2) symmetry are taken into
account. Such decoherence, however, should be characterized by very long times
governed by the smallness of the deviations from the symmetry. We suggest
testing the evolution of by conducting echo-type experiments.Comment: 5 RevTex pages, no figures, typos correcte
Low-cost setup for generation of 3 GHz frequency difference phase-locked laser light
We have devised an all-optical setup for the generation of two phase-locked laser fields with a frequency difference of 3 GHz using only standard optics and two acousto-optical frequency shifters, that are operated at 253 MHz in sixtupel pass. The spectral width of the beat frequency is measured to be 300 Hz ͑full width at half maximum͒ limited by the resolution bandwidth of the spectrum analyzer. We routinely obtain an overall efficiency of more than 15% and demonstrate that the frequency shifted light can be further amplified by injecting it into additional ''slave'' lasers. This setup provides a low-cost alternative over conventional methods to generate laser fields with difference frequencies in the GHz domain, as for example, used in laser spectroscopy, laser cooling and trapping, and coherent manipulation of atomic quantum states
Multiple micro-optical atom traps with a spherically aberrated laser beam
We report on the loading of atoms contained in a magneto-optic trap into
multiple optical traps formed within the focused beam of a CO_{2} laser. We
show that under certain circumstances it is possible to create a linear array
of dipole traps with well separated maxima. This is achieved by focusing the
laser beam through lenses uncorrected for spherical aberration. We demonstrate
that the separation between the micro-traps can be varied, a property which may
be useful in experiments which require the creation of entanglement between
atoms in different micro-traps. We suggest other experiments where an array of
these traps could be useful.Comment: 10 pages, 3 figure
Quantum computing in optical microtraps based on the motional states of neutral atoms
We investigate quantum computation with neutral atoms in optical microtraps
where the qubit is implemented in the motional states of the atoms, i.e., in
the two lowest vibrational states of each trap. The quantum gate operation is
performed by adiabatically approaching two traps and allowing tunneling and
cold collisions to take place. We demonstrate the capability of this scheme to
realize a square-root of swap gate, and address the problem of double
occupation and excitation to other unwanted states. We expand the two-particle
wavefunction in an orthonormal basis and analyze quantum correlations
throughout the whole gate process. Fidelity of the gate operation is evaluated
as a function of the degree of adiabaticity in moving the traps. Simulations
are based on rubidium atoms in state-of-the-art optical microtraps with quantum
gate realizations in the few tens of milliseconds duration range.Comment: 11 pages, 7 figures, for animations of the gate operation, see
http://www.itp.uni-hannover.de/~eckert/na/index.htm
Wave Packet Echoes in the Motion of Trapped Atoms
We experimentally demonstrate and systematically study the stimulated revival
(echo) of motional wave packet oscillations. For this purpose, we prepare wave
packets in an optical lattice by non-adiabatically shifting the potential and
stimulate their reoccurence by a second shift after a variable time delay. This
technique, analogous to spin echoes, enables one even in the presence of strong
dephasing to determine the coherence time of the wave packets. We find that for
strongly bound atoms it is comparable to the cooling time and much longer than
the inverse of the photon scattering rate
- …