41 research outputs found

    Exergy-based Planning and Thermography-based Monitoring for energy efficient buildings - Progress Report (KIT Scientific Reports ; 7632)

    Get PDF
    Designing and monitoring energy efficiency of buildings is vital since they account for up to 40% of end-use energy. In this study, exergy analysis is investigated as a life cycle design tool to strike a balance between thermodynamic efficiency of energy conversion and economic and environmental costs of construction. Quantitative geo-referenced thermography is proposed for monitoring and quantitative assessment via continued simulation and parameter estimation during the operating phase

    Environmental Sustainability Assessment of Multi-Sectoral Energy Transformation Pathways: Methodological Approach and Case Study for Germany

    Get PDF
    In order to analyse long-term transformation pathways, energy system models generally focus on economical and technical characteristics. However, these models usually do not consider sustainability aspects such as environmental impacts. In contrast, life cycle assessment enables an extensive estimate of those impacts. Due to these complementary characteristics, the combination of energy system models and life cycle assessment thus allows comprehensive environmental sustainability assessments of technically and economically feasible energy system transformation pathways. We introduce FRITS, a FRamework for the assessment of environmental Impacts of Transformation Scenarios. FRITS links bottom-up energy system models with life cycle impact assessment indicators and quantifies the environmental impacts of transformation strategies of the entire energy system (power, heat, transport) over the transition period. We apply the framework to conduct an environmental assessment of multi-sectoral energy scenarios for Germany. Here, a ‘Target’ scenario reaching 80% reduction of energy-related direct CO2 emissions is compared with a ‘Reference’ scenario describing a less ambitious transformation pathway. The results show that compared to 2015 and the ‘Reference’ scenario, the ‘Target’ scenario performs better for most life cycle impact assessment indicators. However, the impacts of resource consumption and land use increase for the ‘Target’ scenario. These impacts are mainly caused by road passenger transport and biomass conversion

    Life cycle-based environmental impacts of energy system transformation strategies for Germany: Are climate and environmental protection conflicting goals?

    Get PDF
    In the development of climate-friendly energy system transformation strategies it is often ignored that environmental protection encompasses more than climate protection alone. There is therefore a risk of developing transformation strategies whose climate friendliness comes at the expense of higher other environmental impacts. Consequently, an assessment of environmental impacts of energy system transformation strategies is required if undesired environmental side effects of the energy system transformation are to be avoided and transformation strategies are to be developed that are both climate and environmentally friendly. In this paper, ten structurally different transformation strategies for the German energy system were re-modeled (in a harmonized manner). Five of these scenarios describe pathways for a reduction of direct, energy related CO2 emissions by 80%, the other five by 95%. Life cycle-based environmental impacts of the scenarios were assessed by coupling the scenario results with data from a life cycle inventory database focusing on energy and transport technologies. The results show that the transformation to a climate-friendly energy system reduces environmental impacts in many impact categories. However, exceptions occur with respect to the consumption of mineral resources, land use and certain human health indicators, which could increase with decreasing CO2 emissions. The comparison of environmental impacts of moderately ambitious strategies (80% CO2 reduction) with very ambitious strategies (95% CO2 reduction) shows that there is a risk of increasing environmental impacts with increasing climate protection, although very ambitious strategies do not necessarily come along with higher environmental impacts than moderately ambitious strategies. A reduction of environmental impacts could be achieved by a moderate and - as far as possible - direct electrification of heat and transport, a balanced technology mix for electricity generation, by reducing the number and size of passenger cars and by reducing the environmental impacts from the construction of these vehicles

    Life cycle-based environmental impacts of energy system transformation strategies for Germany: Are climate and environmental protection conflicting goals?

    Get PDF
    In the development of climate-friendly energy system transformation trategies it is often ignored that environmental protection encompasses more than climate protection alone. Consequently, an assessment of nvironmental impacts of energy system transformation strategies is required if undesired environmental side effects of the energy system transformation are to be avoided and transformation strategies are to be developed that are both climate and environmentally friendly. For this presentation, ten structurally different transformation strategies for the German energy system were re-modelled (in a harmonized manner). Life cycle-based environmental impacts of the scenarios were assessed by coupling the scenario results with data from a life cycle inventory database focusing on energy and transport technologies. The results show that the transformation to a climate-friendly energy system reduces environmental impacts in many impact categories. However, exceptions occur with respect to the consumption of mineral resources, land use and certain human health indicators. The comparison of environmental impacts of moderately ambitious strategies (80% CO2 reduction) with very ambitious strategies (95% CO2 reduction) shows that there is a risk of increasing environmental impacts with increasing climate protection, although very ambitious strategies do not necessarily come along with higher environmental impacts than moderately ambitious strategies. A reduction of environmental impacts could be achieved by a moderate and - as far as possible - direct electrification of heat and transport, a balanced technology mix for electricity generation, by reducing the number and size of passenger cars and by reducing the environmental impacts from vehicle construction

    Sustainability assessments of energy scenarios: citizens’ preferences for and assessments of sustainability indicators

    Get PDF
    Background: Given the multitude of scenarios on the future of our energy systems, multi-criteria assessments are increasingly called for to analyze and assess desired and undesired effects of possible pathways with regard to their environmental, economic and social sustainability. Existing studies apply elaborate lists of sustainability indicators, yet these indicators are defined and selected by experts and the relative importance of each indicator for the overall sustainability assessments is either determined by experts or is computed using mathematical functions. Target group-specific empirical data regarding citizens’ preferences for sustainability indicators as well as their reasoning behind their choices are not included in existing assessments. Approach and results: We argue that citizens’ preferences and values need to be more systematically analyzed. Next to valid and reliable data regarding diverse sets of indicators, reflections and deliberations are needed regarding what different societal actors, including citizens, consider as justified and legitimate interventions in nature and society, and what considerations they include in their own assessments. For this purpose, we present results from a discrete choice experiment. The method originated in marketing and is currently becoming a popular means to systematically analyze individuals’ preference structures for energy technology assessments. As we show in our paper, it can be fruitfully applied to study citizens’ values and weightings with regard to sustainability issues. Additionally, we present findings from six focus groups that unveil the reasons behind citizens’ preferences and choices. Conclusions: Our combined empirical methods provide main insights with strong implications for the future development and assessment of energy pathways: while environmental and climate-related effects significantly influenced citizens’ preferences for or against certain energy pathways, total systems and production costs were of far less importance to citizens than the public discourse suggests. Many scenario studies seek to optimize pathways according to total systems costs. In contrast, our findings show that the role of fairness and distributional justice in transition processes featured as a dominant theme for citizens. This adds central dimensions for future multi-criteria assessments that, so far, have been neglected by current energy systems models

    MCDA for sustainability assessment – insights to Helmholtz Association activities

    Get PDF
    The "MCDA for sustainability assessment – insights to Helmholtz Association activities" Working Paper aims to compile and reflect previous and on-going work within the Helmholtz Association related to MCDA, in particular, to present use cases and key methodological aspects. It has a focus on but is not limited to energy technologies and systems and is mainly based on the presentations held at the online workshop “Multi criteria decision analysis for sustainability assessment of energy technologies and systems”. The workshop was organized within the activities of the Helmholtz program ESD Topic 1 "Energy System Transformation" and took place on November 22nd, 2021
    corecore