Life cycle-based environmental impacts of energy system transformation strategies for Germany: Are climate and environmental protection conflicting goals?

Tobias Naegler¹, Jens Buchgeister², Heidi Hottenroth³, Sonja Simon¹, Ingela Tietze³, Tobias Viere³, and Tobias Junne¹

International Conference on Operations Research – OR 2022 Karlsruhe, September 7th 2022

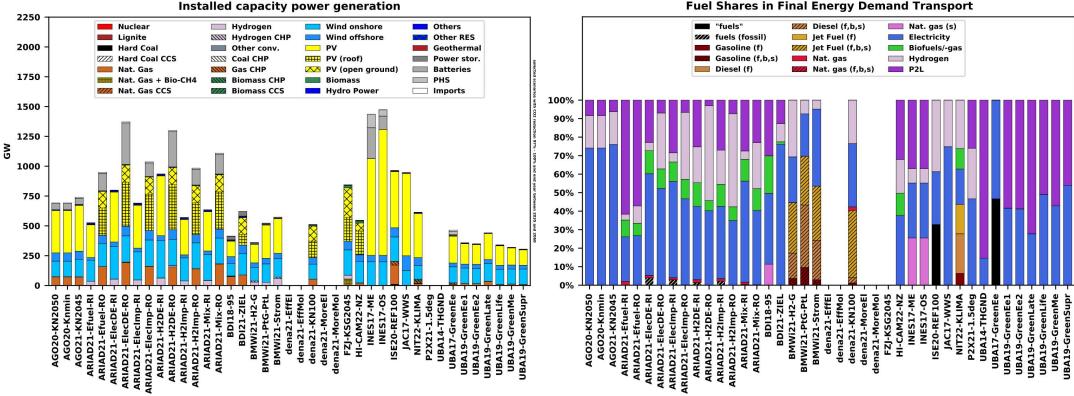
¹ German Aerospace Center (DLR), Institute of Networked Energy Systems (VE)

² Karlsruhe Institute of Technology (KIT),

Institute for Technology Assessment and Systems Analysis (ITAS)

³ Pforzheim University, Institute for Industrial Ecology (INEC)

Supported by:



Federal Ministry for Economic Affairs and Energy

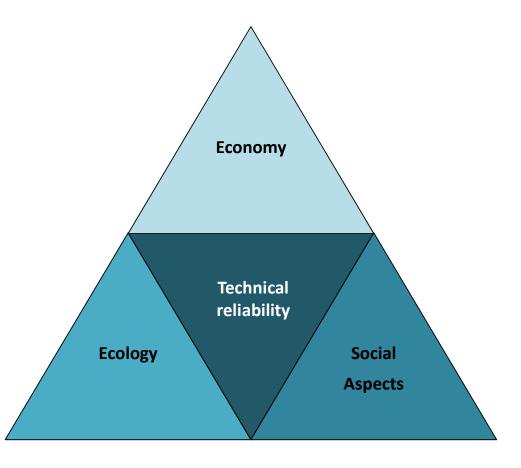
on the basis of a decision by the German Bundestag

Knowledge for Tomorrow

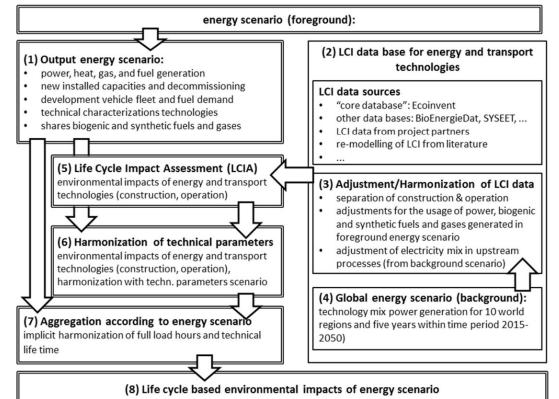
Motivation

Fuel Shares in Final Energy Demand Transport

Many studies describe technically and economically feasible strategies for a climate-friendly energy system, but they propose structurally quite different transformation concepts.


Motivation

Climate protection only one sustainability goal among many others. A transformation strategy of the energy system that considers only climate neutrality and low costs falls short!


Motivation: Sustainable Transformation Strategies for Energy Systems

- Long-term goals:
 - Multidimensional impact assessment for transformation strategies of the entire energy system as
 - Decision aid to identify pros and cons of different transformation strategies
 - Early warning system to avoid undesired side effects of the transformation
 - Development of transformation strategies which are sustainable in a broader sense
- Approach for ecologic impacts: Coupling of energy system modelling with Life Cycle Assessment (LCA) data for energy and transport technologies
- → Estimation environmental impacts of transformation strategies for all life cycle phases including impacts from upstream processes

FRITS: Framework for the Assessment of Environmental Impacts of Transformation Scenarios

- Coupling of energy system models with LCI database for energy and transport technologies
- Separation of construction & operation
- Prospective adjustment of LCI data (power mix)
- Comprehensive harmonization of data in ESM and LCI database (efficiency, double counting)
- Methodological challenges:
 - Availability, representativeness, up-todateness and quality of LCI data
 - Consistent prospective adjustments of background system in LCI database
 - Avoidance of double counting

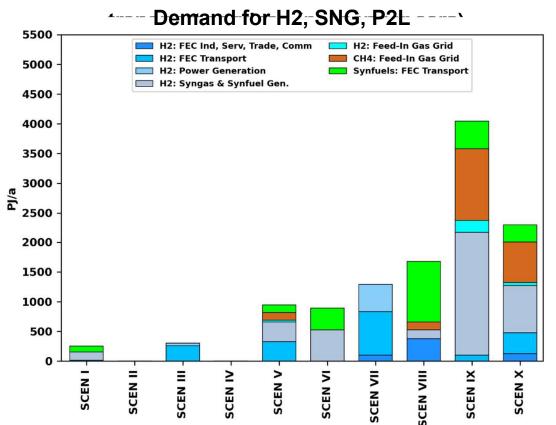
Junne et al.: Environmental sustainability assessment of multi-sectoral energy transformation pathways: Methodological approach and case study for Germany, Sustainability 12 (2020), https://www.mdpi.com/2071-1050/12/19/8225

Ecologic indicators used here

	Category	Indicator	Unit
Midpoint indicators	Climate Change	Climate change	kg CO ₂ eq
	Ecosystem quality	Freshwater and terrestrial acidification	mol H⁺ eq
		Freshwater ecotoxicity	CTUe
		Freshwater eutrophication	kg P eq
		Marine eutrophication	kg N eq
		Terrestrial eutrophication	mol N eq
	Human health	Carcinogenic effects	CTUh
		Non-carcinogenic effects	CTUh
		Ionizing radiation	kg U ²³⁵ eq
		Ozone layer depletion	kg CFC-11 eq
		Photochemical ozone creation	kg NMVOC eq
		Respiratory effects, inorganics	disease incidence
	Resources	Fossils	MJ
		Minerals and metals	kg Sb eq
		Land use	points
		Dissipated water	m ³ water eq
Aggregated indicator		Environmental Footprint 2.0	dimensionless

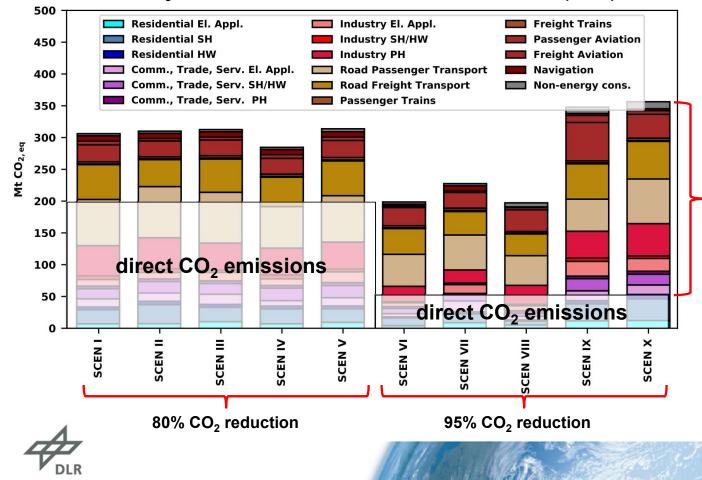
References: Fazio et al. 2018, Supporting information to the characterization factors of the recommended EF Life Cycle Impact Assessment Method – new models and differences with ILCD, European Commission 2018, European Platform on Life Cycle Assessment. Developer Environmental Footprint (EF): EF reference package 2.0 (pilot phase)

www.DLR.de • Chart > Life-cycle based environmental impacts of energy system transformation strategies > T. Naegler et al. • OR 2022 > September 7th 2022 7

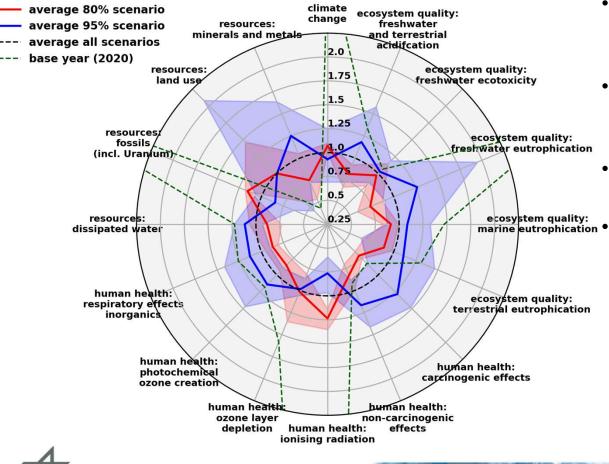

Scenarios selected as "inspiration"

No.	Funding Agency, title and year of original study	Scenario Variant	Research Institutions		
1	BMWi: Gesamtwirtschaftliche Effekte der Energiewende (2018)	EWS	GWS, Prognos, DIW, FhG ISI, DLR		
П	BMWi: Langfristszenarien für die Transformation des Energiesystems in Deutschland (2017)		FhG ISI, ifeu, Consentec		
ш	BMU: Langfristszenarien und Strategien f j, moderate" climate protection scenarios: DLR				
IV	(2012) BMU: Klimaschutzszenario 2050 (2015) reduction of direct CO ₂ emission	ns ca. 80%	o Öko-Institut, FhG ISI, Ziesing		
V	FhG ISE: Was kostet die Energiewende? Wege zur Transformation des deutschen Energiesystems (2015)	80-g-H2-nb	FhG ISE		
VI	BMU: Klimaschutzszenario 2050 (2015)	KSz95	Öko-Institut, FhG ISI, Ziesing		
VII	BEE: GROKO II – Szenarien der deutschen Energie-versorgung auf Basis des EEG-Gesetzentwurfs (2014)	100	J. Nitsch		
VIII	<i>"ambitious" climate protection scenarios:</i> UBA: Den Weg zu einem treibhausgasneutralen Deutschland ressourcenschonend gestalten (2017) reduction of direct CO ₂ emissions ca. 95% ^{SSG}				
IX	INES: Erneuerbare Gase – ein Systemupdate der Energiewende (2017)	OptSys	enervis energy advisors GmbH		
x	dena: Leitstudie integrierte Energiewende (2018)	TM95	ewi Energy Res. & Scen. gGmbH		
7	DLR	1			

Harmonised re-modelling of scenarios necessary


Challenges:

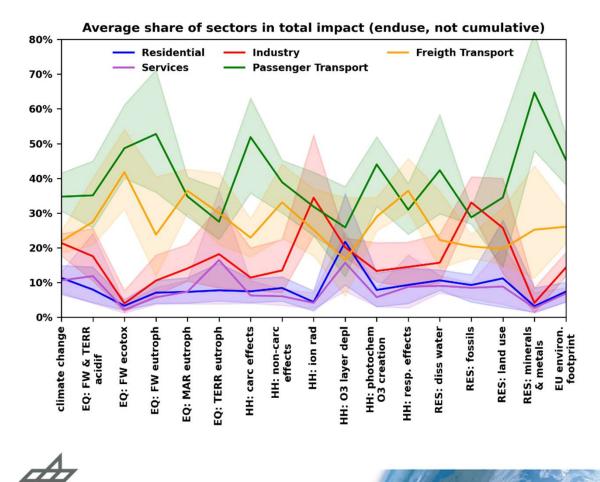
- **Reported quantities not sufficient** to perform analysis with FRITS
- Different boundary conditions:
 - GDP, population, efficiency, modal split, …
 → transport services, useful energy demand, …
 - Techno-economic performance of technologies
- → potential bias in impact assessment, solution:
 Consistent, harmonised re-modelling of scenarios
- **Re-modelling** in a single model framework
- Harmonisation of boundary conditions
- Use "technical storyline" from original studies: Development of market shares of technologies and/or energy carriers within each sector taken


Life cycle perspective matters!

Life-cycle based total Greenhouse Gas emissions (2050)

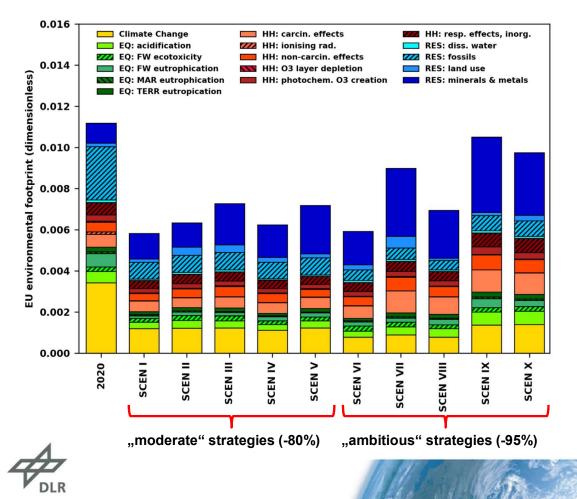
- Life-cycle perspective matters!
- GHG emissions from upstream processes might be higher than ehossioniscregroupstreastem
- Processes (Derck grinissionstam) 95% socialized in the signal social states of the second second
- direct emissions considered!
 (Discrepancy between direct and LC emissions is expected to decrease with further prospective adjustments in background data base, .e.g. for industrial processes)

Life-cycle based environmental impacts of transformation strategies



- Environmental impacts of the energy system decrease in most impact categories by 2050 compared to today.
- Exceptions: Mineral resources, land use, depending on scenario also certain aspects of human health and ecosystem quality
- More climate protection does not always mean lower other environmental impacts!

Cause: Higher degree of direct and indirect electrification in ambitious scenarios requires


- Higher impacts from electricity infrastructure (electricity generation and storage)
- Higher impacts from new conversion technologies (P2X)
- Higher impacts from vehicles with "new" drive concepts (BEVs, FCEVs, ...)

Life-cycle based environmental impacts of transformation strategies

- Environmental impacts from the transport sector dominate in most impact categories.
- Cause: high environmental impacts from the construction of BEVs & FCEVs as well as the provision of biofuels, if applicable.
- Impacts from vehicle operation comparatively low

Life-cycle based environmental impacts: EU Environmental Footprint (EF) as an aggregated indicator

- Aggregated environmental impacts decrease in all scenarios by 2050 compared with 2020
- Remaining (LC-based) GHG emissions and mineral consumption are main drivers of EF
- Large spread among "ambitious" strategies

Ambitious climate protection offers the chance of low environmental impacts, but also poses a risk of higher impacts if the wrong strategy is chosen!

Summary and conclusion

- A climate-friendly transformation of the energy system generally leads to a reduction of other environmental impacts as well (with some exceptions).
- There is a *risk* for comparably high impacts if the wrong strategy is chosen in particular in ambitious scenarios.
- Transport is responsible for a large share of impacts in most impact categories:
 - Construction of vehicles with "new" drive trains
 - Construction of power plants for direct or indirect electrification of transport
 - Electrolyzers, methanation and biofuels
- Strategies for environmentally- and climate-friendly energy systems imply:
 - Reduced number and size of BEVs (in particular batteries in those vehicles)
 - Reduction of environmental impacts at construction stage (BEVs, FCEVs, ...)
 - Electrification of heat and transport as moderate as possible: if possible direct electrification instead of indirect electrification via P2X; if possible use of environmental, geothermal or solarthermal heat.
 - Balanced power generation mix (no excessive PV installations)

DLR.de • Chart 14 > Life-cycle based environmental impacts of energy system transformation strategies > T. Naegler et al. • OR 2022 > September 7th 2022

Thank you very much for your attention!

Questions, comments, suggestions?

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Literature

- Junne et al.: Environmental sustainability assessment of multi-sectoral energy transformation pathways: Methodological approach and case study for Germany, Sustainability 12 (2020), <u>https://www.mdpi.com/2071-1050/12/19/8225</u>
- Naegler et al.: Life cycle-based environmental impacts of energy system transformation strategies for Germany: Are climate and environmental protection conflicting goals?, Energy Reports 8 (2022), <u>https://doi.org/10.1016/j.egyr.2022.03.143</u>
- Junne et al.: Considering life cycle greenhouse gas emissions in power system expansion planning for Europe and North Africa Using Multi-Objective Optimization; Energies 14 (2021), <u>https://doi.org/10.3390/en14051301</u>

