73 research outputs found

    Symposium 2: Retrieval and Reactivation of the Memory Trace

    Get PDF

    Histaminergic ligands injected into the nucleus basalis magnocellularis differentially affect fear conditioning consolidation

    Get PDF
    Abstract The role of the nucleus basalis magnocellularis (NBM) in fear conditioning encoding is well established. In the present report, we investigate the involvement of the NBM histaminergic system in consolidating fear memories. The NBM was injected bilaterally with ligands of histaminergic receptors immediately after contextual fear conditioning. Histaminergic compounds, either alone or in combination, were stereotaxically administered to different groups of adult male Wistar rats and memory was assessed as conditioned freezing duration 72 h after administration. This protocol prevents interference with NBM function during either acquisition or retrieval phases, hence restricting the effect of pharmacological manipulations to fear memory consolidation. The results presented here demonstrate that post-training H3 receptors (H3R) blockade with the antagonist/inverse agonist thioperamide or activation with immepip in the NBM potentiates or decreases, respectively, freezing response at retrieval. Thioperamide induced memory enhancement seems to depend on H2R, but not H1R activation, as the H2R antagonist zolantidine blocked the effect of thioperamide, whereas the H1R antagonist pyrilamine was ineffective. Furthermore, the H2R agonist ampthamine improved fear memory expression independently of the H3R agonist effect. Our results indicate that activation of post-synaptic H2R within the NBM by endogenous histamine is responsible for the potentiated expression of fear responses. The results are discussed in terms of activation of H3 auto- and heteroreceptors within the NBM and the differential effect of H3R ligands on fear memory consolidation in distinct brain regions

    Memory retrieval of inhibitory avoidance requires histamine H receptor activation in the hippocampus

    Get PDF
    Retrieval represents a dynamic process that may require neuromodulatory signaling. Here, we report that the integrity of the brain histaminergic system is necessary for retrieval of inhibitory avoidance (IA) memory, because rats depleted of histamine through lateral ventricle injections of α-fluoromethylhistidine (a-FMHis), a suicide inhibitor of histidine decarboxylase, displayed impaired IA memory when tested 2 d after training. a-FMHis was administered 24 h after training, when IA memory trace was already formed. Infusion of histamine in hippocampal CA1 of brain histamine-depleted rats (hence, amnesic) 10 min before the retention test restored IA memory but was ineffective when given in the basolateral amygdala (BLA) or the ventral medial prefrontal cortex (vmPFC). Intra-CA1 injections of selective H(1) and H(2) receptor agonists showed that histamine exerted its effect by activating the H(1) receptor. Noteworthy, the H(1) receptor antagonist pyrilamine disrupted IA memory retrieval in rats, thus strongly supporting an active involvement of endogenous histamine; 90 min after the retention test, c-Fos–positive neurons were significantly fewer in the CA1s of a-FMHis–treated rats that displayed amnesia compared with in the control group. We also found reduced levels of phosphorylated cAMP-responsive element binding protein (pCREB) in the CA1s of a-FMHis–treated animals compared with in controls. Increases in pCREB levels are associated with retrieval of associated memories. Targeting the histaminergic system may modify the retrieval of emotional memory; hence, histaminergic ligands might reduce dysfunctional aversive memories and improve the efficacy of exposure psychotherapies
    • …
    corecore