4,881 research outputs found
The initial conditions of the universe: how much isocurvature is allowed?
We investigate the constraints imposed by the current data on correlated
mixtures of adiabatic and non-adiabatic primordial perturbations. We discover
subtle flat directions in parameter space that tolerate large (~60%)
contributions of non-adiabatic fluctuations. In particular, larger values of
the baryon density and a spectral tilt are allowed. The cancellations in the
degenerate directions are explored and the role of priors elucidated.Comment: 4 pages, 4 figures. Submitted to PR
Open inflation and the singular boundary
The singularity in Hawking and Turok's model (hep-th/9802030) of open
inflation has some appealing properties. We suggest that this singularity
should be regularized with matter. The singular instanton can then be obtained
as the limit of a family of ``no-boundary'' solutions where both the geometry
and the scalar field are regular. Using this procedure, the contribution of the
singularity to the Euclidean action is just 1/3 of the Gibbons-Hawking boundary
term. Unrelated to this question, we also point out that gravitational
backreaction improves the behaviour of scalar perturbations near the
singularity. As a result, the problem of quantizing scalar perturbations and
gravity waves seems to be very well posed.Comment: 7 page
Constraints on isocurvature models from the WMAP first-year data
We investigate the constraints imposed by the first-year WMAP CMB data
extended to higher multipole by data from ACBAR, BOOMERANG, CBI and the VSA and
by the LSS data from the 2dF galaxy redshift survey on the possible amplitude
of primordial isocurvature modes. A flat universe with CDM and Lambda is
assumed, and the baryon, CDM (CI), and neutrino density (NID) and velocity
(NIV) isocurvature modes are considered. Constraints on the allowed
isocurvature contributions are established from the data for various
combinations of the adiabatic mode and one, two, and three isocurvature modes,
with intermode cross-correlations allowed. Since baryon and CDM isocurvature
are observationally virtually indistinguishable, these modes are not considered
separately. We find that when just a single isocurvature mode is added, the
present data allows an isocurvature fraction as large as 13+-6, 7+-4, and 13+-7
percent for adiabatic plus the CI, NID, and NIV modes, respectively. When two
isocurvature modes plus the adiabatic mode and cross-correlations are allowed,
these percentages rise to 47+-16, 34+-12, and 44+-12 for the combinations
CI+NID, CI+NIV, and NID+NIV, respectively. Finally, when all three isocurvature
modes and cross-correlations are allowed, the admissible isocurvature fraction
rises to 57+-9 per cent. The sensitivity of the results to the choice of prior
probability distribution is examined.Comment: 20 pages, 24 figures. Submitted to PR
A prescription for probabilities in eternal inflation
Some of the parameters we call ``constants of Nature'' may in fact be
variables related to the local values of some dynamical fields. During
inflation, these variables are randomized by quantum fluctuations. In cases
when the variable in question (call it ) takes values in a continuous
range, all thermalized regions in the universe are statistically equivalent,
and a gauge invariant procedure for calculating the probability distribution
for is known. This is the so-called ``spherical cutoff method''. In
order to find the probability distribution for it suffices to consider a
large spherical patch in a single thermalized region. Here, we generalize this
method to the case when the range of is discontinuous and there are
several different types of thermalized region. We first formulate a set of
requirements that any such generalization should satisfy, and then introduce a
prescription that meets all the requirements. We finally apply this
prescription to calculate the relative probability for different bubble
universes in the open inflation scenario.Comment: 15 pages, 5 figure
- …