4,009 research outputs found
Reaction Textures and Metamorphic Evolution of Sapphirine-bearing Granulites from the Gruf Complex, Italian Central Alps
Mineral chemistries and textures are described from a suite of sapphirine-bearing granulites from the Gruf Complex of the Italian Central Alps. The granulites contain combinations of garnet, orthopyroxene, sapphirine, sillimanite, cordierite, biotite, quartz, spinel, corundum, staurolite, plagioclase, K-feldspar, ilmenite and rutile, in assemblages with low (usually negative) variance. They are outstanding in that they preserve a textural and chemical record of a protracted metamorphic evolution. Reaction textures are common and include: (i) pseudomorphs (e.g. of sillimanite after kyanite); (ii) relatively coarse-grained monomineralic reaction rims (e.g. of cordierite between sapphirine and quartz); (iii) fine-grained symplectitic coronas (e.g. of orthopyroxene + sapphirine round garnet); (iv) inclusions, in garnet cores, of minerals (e.g. staurolite) not found elsewhere in the rocks. Detailed microprobe study has revealed large chemical variations within each phase. Different textural types of each phase have different compositions, and strong zoning is preserved in garnet (Mg/(Mg + Fe) from 0.30 to 0.61) and coarse sapphirine. Inclusion populations in garnet correlate with host composition. The textural and chemical features are interpreted in terms of successive equilibrium assemblages and reactions. Metamorphic conditions operative at each stage in the evolution are calculated using published geothermometers and geobarometers as well as thermodynamically calibrated MAS and FASH equilibria. The results are used to construct a P—T-time path for the sapphirine-granulites, which can be summarized as follows: (i) Increasing T at high P (>7 kb). Partial melting. (ii) A maximum T of ∼830 °C attained at ∼10 kb. (iii) Almost isothermal decompression, reaching 750 °C at ∼5 kb, under conditions of low μH2O. (iv) Further cooling, and decompression. Localized hydration. Rocks exposed. The P—T-time path is interpreted as the product of a single metamorphic cycle (the tertiary ‘Lepontine' event) and is extrapolated to the Gruf Complex as a whole. When combined with published geochronological data, the results indicate an average uplift rate in excess of 2 mm/yr for the Gruf Complex between 38 and 30 Ma ago. An in situ partial melting origin for the sapphirine-granulites is favoured. Extraction of an iron-rich granitic liquid from a normal pelitic palaeosome could generate a refractory residue with the required Mg, Al-rich composition. The change in bulk solid composition during partial melting is thought to account for the extraordinarity strong zoning in the garnet
An integrated approach to rotorcraft human factors research
As the potential of civil and military helicopters has increased, more complex and demanding missions in increasingly hostile environments have been required. Users, designers, and manufacturers have an urgent need for information about human behavior and function to create systems that take advantage of human capabilities, without overloading them. Because there is a large gap between what is known about human behavior and the information needed to predict pilot workload and performance in the complex missions projected for pilots of advanced helicopters, Army and NASA scientists are actively engaged in Human Factors Research at Ames. The research ranges from laboratory experiments to computational modeling, simulation evaluation, and inflight testing. Information obtained in highly controlled but simpler environments generates predictions which can be tested in more realistic situations. These results are used, in turn, to refine theoretical models, provide the focus for subsequent research, and ensure operational relevance, while maintaining predictive advantages. The advantages and disadvantages of each type of research are described along with examples of experimental results
The initial conditions of the universe: how much isocurvature is allowed?
We investigate the constraints imposed by the current data on correlated
mixtures of adiabatic and non-adiabatic primordial perturbations. We discover
subtle flat directions in parameter space that tolerate large (~60%)
contributions of non-adiabatic fluctuations. In particular, larger values of
the baryon density and a spectral tilt are allowed. The cancellations in the
degenerate directions are explored and the role of priors elucidated.Comment: 4 pages, 4 figures. Submitted to PR
Recommended from our members
Microprocessor tester for the treat upgrade reactor trip system
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations
Recommended from our members
Fissile sample worths in the Uranium/Iron Benchmark
One of the long-standing problems from LMFBR critical experiments is the central worth discrepancy, the consistent overprediction of the reactivity associated with introducing a small material sample near the center of an assembly. Reactivity (sample worth) experiments in ZPR-9, assembly 34, the Uranium/Iron Benchmark (U/Fe), were aimed at investigating this discrepancy. U/Fe had a large, single-region core whose neutronics was governed almost entirely by /sup 235/U and iron. The essentially one-dimensional plate unit cell had one 1.6 mm-wide column of 93% enriched uranium (U(93)) near the center, imbedded in about 50 mm of iron and stainless steel. The neutron spectrum was roughly comparable to that of an LMFBR, but the adjoint spectrum was much flatter than an LMFBR's. The worths of four different fissile materials were measured and the worth of U(93) was measured using several different experimental techniques
Towards a typology of spatial relations and properties for urban applications
Relations that occur between features located in space–like the fact that a street is surrounded by very high buildings, that an airport is close to a city- as well as spatial properties of features–like the height and width of a door- play an important role for many urban applications. Digital models of cities can assist in the evaluation of these relations and properties either through visualisation or through computation, mainly based on geometrical information. Hence, considering the objective of explaining to potential users of these city models what useful information they can derive from these data and how, a possible way to address this objective lies in the usage of a pivot model composed of relevant spatial properties and relations, connected to information meaningful to the user and connected to the possible computation of them on available data. This paper firstly sets the ground for a typology of such relevant relations and properties that are shared by different applications and that can be derived/approximated from existing data. It then proposes a model to describe these properties and relations and connect them to their possible computation based on data (2D or 3D). An important aspect of this model is to distinguish between a conceptual layer where relations occur between “real world” features and an implementation layer where they are calculated based on database features and geometries
Constraints on isocurvature models from the WMAP first-year data
We investigate the constraints imposed by the first-year WMAP CMB data
extended to higher multipole by data from ACBAR, BOOMERANG, CBI and the VSA and
by the LSS data from the 2dF galaxy redshift survey on the possible amplitude
of primordial isocurvature modes. A flat universe with CDM and Lambda is
assumed, and the baryon, CDM (CI), and neutrino density (NID) and velocity
(NIV) isocurvature modes are considered. Constraints on the allowed
isocurvature contributions are established from the data for various
combinations of the adiabatic mode and one, two, and three isocurvature modes,
with intermode cross-correlations allowed. Since baryon and CDM isocurvature
are observationally virtually indistinguishable, these modes are not considered
separately. We find that when just a single isocurvature mode is added, the
present data allows an isocurvature fraction as large as 13+-6, 7+-4, and 13+-7
percent for adiabatic plus the CI, NID, and NIV modes, respectively. When two
isocurvature modes plus the adiabatic mode and cross-correlations are allowed,
these percentages rise to 47+-16, 34+-12, and 44+-12 for the combinations
CI+NID, CI+NIV, and NID+NIV, respectively. Finally, when all three isocurvature
modes and cross-correlations are allowed, the admissible isocurvature fraction
rises to 57+-9 per cent. The sensitivity of the results to the choice of prior
probability distribution is examined.Comment: 20 pages, 24 figures. Submitted to PR
Singular behaviour of the electromagnetic field
The singularities of the electromagnetic field are derived to include all the
point-like multipoles representing an electric charge and current distribution.
Firstly derived in the static case, the result is generalized to the dynamic
one. We establish a simple procedure for passing from the first, to the second
case.Comment: Latex, 21.pages, no figure
- …