267 research outputs found

    High frequency sound waves in vitreous silica

    Full text link
    We report a molecular dynamics simulation study of the sound waves in vitreous silica in the mesoscopic exchanged momentum range. The calculated dynamical structure factors are in quantitative agreement with recent experimental inelastic neutron and x-ray scattering data. The analysis of the longitudinal and transverse current spectra allows to discriminate between opposite interpretations of the existing experimental data in favour of the propagating nature of the high frequency sound waves.Comment: 4 pages, Revtex, 4 ps figures; to be published in Phys. Rev. Lett., February 198

    Interaction of quasilocal harmonic modes and boson peak in glasses

    Full text link
    The direct proportionality relation between the boson peak maximum in glasses, ωb\omega_b, and the Ioffe-Regel crossover frequency for phonons, ωd\omega_d, is established. For several investigated materials ωb=(1.5±0.1)ωd\omega_b = (1.5\pm 0.1)\omega_d. At the frequency ωd\omega_d the mean free path of the phonons ll becomes equal to their wavelength because of strong resonant scattering on quasilocal harmonic oscillators. Above this frequency phonons cease to exist. We prove that the established correlation between ωb\omega_b and ωd\omega_d holds in the general case and is a direct consequence of bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur

    The distribution of polycomb-group proteins during cell division and development in Drosophila embryos: Impact on models for silencing

    Get PDF
    The subcellular three-dimensional distribution of three polycomb-group (PcG) proteins—polycomb, polyhomeotic and posterior sex combs—in fixed whole-mount Drosophila embryos was analyzed by multicolor confocal fluorescence microscopy. All three proteins are localized in complex patterns of 100 or more loci throughout most of the interphase nuclear volume. The rather narrow distribution of the protein intensities in the vast majority of loci argues against a PcG-mediated sequestration of repressed target genes by aggregation into subnuclear domains. In contrast to the case for PEV repression (Csink, A.K., and S. Henikoff. 1996. Nature. 381:529–531), there is a lack of correlation between the occurrence of PcG proteins and high concentrations of DNA, demonstrating that the silenced genes are not targeted to heterochromatic regions within the nucleus. There is a clear distinction between sites of transcription in the nucleus and sites of PcG binding, supporting the assumption that most PcG binding loci are sites of repressive complexes. Although the PcG proteins maintain tissue-specific repression for up to 14 cell generations, the proteins studied here visibly dissociate from the chromatin during mitosis, and disperse into the cytoplasm in a differential manner. Quantitation of the fluorescence intensities in the whole mount embryos demonstrate that the dissociated proteins are present in the cytoplasm. We determined that <2% of PH remains attached to late metaphase and anaphase chromosomes. Each of the three proteins that were studied has a different rate and extent of dissociation at prophase and reassociation at telophase. These observations have important implications for models of the mechanism and maintenance of PcG- mediated gene repression

    The distribution of Polycomb-group proteins during cell division and development in Drosophila embryos: impact on models for silencing

    No full text
    The subcellular three-dimensional distribution of three polycomb-group (PcG) proteins-polycomb, polyhomeotic and posterior sex combs-in fixed whole-mount Drosophila embryos was analyzed by multicolor confocal fluorescence microscopy. All three proteins are localized in complex patterns of 100 or more loci throughout most of the interphase nuclear volume. The rather narrow distribution of the protein intensities in the vast majority of loci argues against a PcG-mediated sequestration of repressed target genes by aggregation into subnuclear domains. In contrast to the case for PEV repression (Csink, A.K., and S. Henikoff. 1996. Nature. 381:529-531), there is a lack of correlation between the occurrence of PcG proteins and high concentrations of DNA, demonstrating that the silenced genes are not targeted to heterochromatic regions within the nucleus. There is a clear distinction between sites of transcription in the nucleus and sites of PcG binding, supporting the assumption that most PcG binding loci are sites of repressive complexes. Although the PcG proteins maintain tissue-specific repression for up to 14 cell generations, the proteins studied here visibly dissociate from the chromatin during mitosis, and disperse into the cytoplasm in a differential manner. Quantitation of the fluorescence intensities in the whole mount embryos demonstrate that the dissociated proteins are present in the cytoplasm. We determined that <2% of PH remains attached to late metaphase and anaphase chromosomes. Each of the three proteins that were studied has a different rate and extent of dissociation at prophase and reassociation at telophase. These observations have important implications for models of the mechanism and maintenance of PcG-mediated gene repression

    Observation of Umklapp processes in non-crystalline materials

    Full text link
    Umklapp processes are known to exist in cristalline materials, where they control important properties such as thermal conductivity, heat capacity and electrical conductivity. In this work we report the provocative observation of Umklapp processes in a non-periodical system, namely liquid Lithium. The lack of a well defined periodicity seems then not to prevent the existence of these scattering processes mechanisms provided that the local order of the systems i.e. the maxima of the static structure factor supply the equivalent of a reciprocal lattice vector in the case of cristalline materials.Comment: 13 pages P

    Phonons from neutron powder diffraction

    Full text link
    The spherically averaged structure function \soq obtained from pulsed neutron powder diffraction contains both elastic and inelastic scattering via an integral over energy. The Fourier transformation of \soq to real space, as is done in the pair density function (PDF) analysis, regularizes the data, i.e. it accentuates the diffuse scattering. We present a technique which enables the extraction of off-center phonon information from powder diffraction experiments by comparing the experimental PDF with theoretical calculations based on standard interatomic potentials and the crystal symmetry. This procedure (dynamics from powder diffraction(DPD)) has been successfully implemented for two systems, a simple metal, fcc Ni, and an ionic crystal, CaF2_{2}. Although computationally intensive, this data analysis allows for a phonon based modeling of the PDF, and additionally provides off-center phonon information from powder neutron diffraction

    Energy landscape - a key concept for the dynamics of glasses and liquids

    Full text link
    There is a growing belief that the mode coupling theory is the proper microscopic theory for the dynamics of the undercooled liquid above a critical temperature T_c. In addition, there is some evidence that the system leaves the saddlepoints of the energy landscape to settle in the valleys at this critical temperature. Finally, there is a microscopic theory for the entropy at the calorimetric glass transition T_g by Mezard and Parisi, which allows to calculate the Kauzmann temperature from the atomic pair potentials. The dynamics of the frozen glass phase is at present limited to phenomenological models. In the spirit of the energy landscape concept, one considers an ensemble of independent asymmetric double-well potentials with a wide distribution of barrier heights and asymmetries (ADWP or Gilroy-Phillips model). The model gives an excellent description of the relaxation of glasses up to about T_g/4. Above this temperature, the interaction between different relaxation centers begins to play a role. One can show that the interaction reduces the number of relaxation centers needed to bring the shear modulus down to zero by a factor of three.Comment: Contribution to the III Workshop on Nonequilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, 22-27 September 2002, Pisa; 14 pages, 3 figures; Version 3 takes criticque at Pisa into account; final version 4 will be published in J.Phys.: Condens.Matte

    The Raman coupling function in amorphous silica and the nature of the long wavelength excitations in disordered systems

    Full text link
    New Raman and incoherent neutron scattering data at various temperatures and molecular dynamic simulations in amorphous silica, are compared to obtain the Raman coupling coefficient C(ω)C(\omega) and, in particular, its low frequency limit. This study indicates that in the ω→0\omega \to 0 limit C(ω)C(\omega) extrapolates to a non vanishing value, giving important indications on the characteristics of the vibrational modes in disordered materials; in particular our results indicate that even in the limit of very long wavelength the local disorder implies non-regular local atomic displacements.Comment: Revtex, 4 ps figure

    Voronoi-Delaunay analysis of normal modes in a simple model glass

    Full text link
    We combine a conventional harmonic analysis of vibrations in a one-atomic model glass of soft spheres with a Voronoi-Delaunay geometrical analysis of the structure. ``Structure potentials'' (tetragonality, sphericity or perfectness) are introduced to describe the shape of the local atomic configurations (Delaunay simplices) as function of the atomic coordinates. Apart from the highest and lowest frequencies the amplitude weighted ``structure potential'' varies only little with frequency. The movement of atoms in soft modes causes transitions between different ``perfect'' realizations of local structure. As for the potential energy a dynamic matrix can be defined for the ``structure potential''. Its expectation value with respect to the vibrational modes increases nearly linearly with frequency and shows a clear indication of the boson peak. The structure eigenvectors of this dynamical matrix are strongly correlated to the vibrational ones. Four subgroups of modes can be distinguished

    The crossover from propagating to strongly scattered acoustic modes of glasses observed in densified silica

    Full text link
    Spectroscopic results on low frequency excitations of densified silica are presented and related to characteristic thermal properties of glasses. The end of the longitudinal acoustic branch is marked by a rapid increase of the Brillouin linewidth with the scattering vector. This rapid growth saturates at a crossover frequency Omega_co which nearly coincides with the center of the boson peak. The latter is clearly due to additional optic-like excitations related to nearly rigid SiO_4 librations as indicated by hyper-Raman scattering. Whether the onset of strong scattering is best described by hybridization of acoustic modes with these librations, by their elastic scattering (Rayleigh scattering) on the local excitations, or by soft potentials remains to be settled.Comment: 14 pages, 6 figures, to be published in a special issue of J. Phys. Condens. Matte
    • …
    corecore